Sex differences in human emotion and related decision-making behaviors are recognized, which can be traced back early in development. However, our understanding of their underlying neurodevelopmental mechanisms remains elusive. Using developmental functional magnetic resonance imaging and computational approach, we investigated developmental sex differences in latent decision-making dynamics during negative emotion processing and related neurocognitive pathways in 243 school-aged children and 78 young adults. Behaviorally, girls exhibit higher response caution and more effective evidence accumulation, whereas boys show more impulsive response to negative facial expression stimuli. These effects parallel sex differences in emotion-related brain maturity linking to evidence accumulation, along with age-related decrease in emotional response in the basolateral amygdala and medial prefrontal cortex (MPFC) in girls and an increase in the centromedial amygdala (CMA) in boys. Moreover, girls exhibit age-related decreases in BLA–MPFC coupling linked to evidence accumulation, but boys exhibit increases in CMA–insula coupling associated with response caution. Our findings highlight the neurocomputational accounts for developmental sex differences in emotion and emotion-related behaviors and provide important implications into the neurodevelopmental mechanisms of sex differences in latent emotional decision-making dynamics. This informs the emergence of sex differences in typical and atypical neurodevelopment of children’s emotion and related functions.
The default mode network (DMN) is a workspace for convergence of internal and external information. The frontal parietal network (FPN) is indispensable to executive functioning. Yet, how they interplay to support cognitive development remains elusive. Using longitudinal developmental fMRI with an n-back paradigm, we show a heterogeneity of maturational changes in multivoxel activity and network connectivity among DMN and FPN nodes in 528 children and 103 young adults. Compared with adults, children exhibited prominent longitudinal improvement but still inferior behavioral performance, which paired with less pronounced DMN deactivation and weaker FPN activation in children, but stronger DMN coupling with FPN regions. Children’s DMN reached an adult-like level earlier than FPN at both multivoxel activity pattern and intranetwork connectivity levels. Intrinsic DMN-FPN internetwork coupling in children mediated the relationship between age and working memory-related functional coupling of these networks, with posterior cingulate cortex (PCC)-dorsolateral prefrontal cortex (DLPFC) coupling emerging as most prominent pathway. Coupling of PCC-DLPFC may further work together with task-invoked activity in PCC to account for longitudinal improvement in behavioral performance in children. Our findings suggest that the DMN provides a scaffolding effect in support of an immature FPN that is critical for the development of executive functions in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.