Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin's antiphotodamage and antiphotoinflammation activities.
Ultraviolet (UV) exposure has been demonstrated as the most critical factor causing extrinsic skin aging and inflammation. This study explored the protective effects and mechanisms of sesamin against skin photodamage. Sesamin reduced intracellular reactive oxygen species production after UVB irradiation in human dermal fibroblasts. The sesamin treatment attenuated mitogen-activated protein (MAP) kinase phosphorylation and matrix metalloproteinase (MMPs) overexpression induced by UVB exposure, and it significantly enhanced the tissue inhibitor of metalloproteinase-1 protein expression. Sesamin also elevated the total collagen content in human fibroblasts by inhibiting UVB-induced mothers against decapentaplegic homolog 7 (Smad7) protein expression. Sesamin reduced UVB-induced inducible nitric oxide synthase (i-NOS) and cyclooxygenase-2 (COX-2) overexpression and inhibited nuclear factor-kappa B (NF-κB) translocation. Moreover, sesamin may regulate the c-Jun N-terminal kinases (JNK) and p38 MAP kinase pathways, which inhibit COX-2 expression. Sesamin could reduce UVB-induced inflammation, epidermal hyperplasia, collagen degradation, and wrinkle formation in hairless mice. It also reduced MMP-1, interleukin (IL-1), i-NOS, and NF-κB in the mouse skin. These results demonstrate that sesamin had antiphotodamage and anti-inflammatory activities. Sesamin has potential for use as a skin protection agent in antiphotodamage and skin care products.
In traditional Chinese medicine (TCM), purgation is indicated when a person suffers an illness due to the accumulation of evil internal heat. Obese individuals with a large belly, red face, thick and yellow tongue fur, constipation, and avoidance of heat are thought accumulates of evil internal heat, and they are also treated with purgatives such as Ta-Cheng-Chi-Tang (TCCT), Xiao-Chen-Chi-Tang (XCCT), and Tiao-Wei-Chen-Chi-Tang (TWCCT) by TCM doctors. In previous studies, our group found that TCCT has potent anti-inflammatory activity, and that XCCT is an effective antioxidant. Since rhubarb is the principle herb in these three prescriptions, we will first present a thorough review of the literature on the demonstrated effect (or lack of effect) of rhubarb and rhubarb-containing polyherbal preparations on lipid and weight control. We will then continue our research with an investigation of the anti-obesity and lipid-lowering effect of TCCT, XCCT, TWCCT, and rhubarb extracts using two animal models. TWCCT lowered the serum triglyceride concentration as much as fenofibrate in Triton WR-1339-treated mice. Daily supplementation with XCCT and TWCCT significantly attenuated the high-fat-diet-induced hypercholesterolemia in rats. In addition, TWCCT also significantly lowered the high-fat-diet-induced hypertriglycemia. Although feeding high-fat diet rats with these extracts did not cause loose stools or diarrhea or other deleterious effects on renal or hepatic function. None of these extracts lowered the body weight of rats fed on high-fat diet. In conclusion, the results suggest that XCCT and TWCCT might exert beneficial effects in the treatment of hyperlipidemia.
Pracparatum mungo (Lu‐Do‐Huang) is a derivative of Phaseolus mungo beans of the Leguminosae plant as a traditional medicine for liver detoxifying and anti‐liver cancer effect in southern China. The present study aimed to evaluate Lu‐Do‐Huang ethanol extract (LDHE) on anti‐liver cancer effect with Hep3B cell. The apoptotic activities of LDHE were assessed using flow cytometry, western blotting and immunohistochemical analysis. Our result showed that LDHE significantly inhibited the Hep3B cell growth. LDHE induced Hep3B cells to undergo apoptosis which was determined from Hep3B cell morphology change, increase of apoptotic bodies, apoptotic cells, DNA fragmentations and caspase activity. In conclusion, LDHE lead Hep3B cell to the apoptosis that can be used as precusors in development of anti‐liver cancer drugs. Suppression of apoptosis might contribute to tumor development by mean of accumulation of continuously proliferating cells.
Background: It is well known that tumor-associated macrophages (TAMs) play essential roles in brain tumor resistance to chemotherapy. However, the detailed mechanisms of how TAMs are involved in brain tumor resistance are still unclear and lack a suitable analysis model. Methods: A BV2 microglial cells with ALTS1C1 astrocytoma cells in vitro co-culture system was used to mimic the microglia dominating tumor stroma in the tumor invasion microenvironment and explore the interaction between microglia and brain tumor cells. Results: Our result suggested that microglia could form colonies with glioma cells under high-density culturing conditions and protect glioma cells from apoptosis induced by chemotherapeutic drugs. Moreover, this study demonstrates that microglia could hijack drug substances from the glioma cells and reduce the drug intensity of ALTS1C1 via direct contact. Inhibition of gap junction protein prevented microglial-glioma colony formation and microglia-mediated chemoresistance. Conclusions: This study provides novel insights into how glioma cells acquire chemoresistance via microglia-mediated drug substance transferring, providing a new option for treating chemo-resistant brain tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.