Background and PurposeOur previous research showed that ferroptosis plays a crucial role in the pathophysiology of PM2.5‐induced lung injury. The present study aimed to investigate the protective role of the Nrf2 signalling pathway and its bioactive molecule tectoridin in PM2.5‐induced lung injury by regulating ferroptosis.Experimental ApproachWe examined the regulatory effect of Nrf2 on ferroptosis in PM2.5‐induced lung injury and Beas‐2b cells using Nrf2‐knockout (KO) mice and Nrf2 siRNA transfection. The effects and underlying mechanisms of tectoridin on PM2.5‐induced lung injury were evaluated in vitro and in vivo.Key ResultsNrf2 deletion increased iron accumulation and ferroptosis‐related protein expression in vivo and vitro, further exacerbating lung injury and cell death in response to PM2.5 exposure. Tectoridin activated Nrf2 target genes and ameliorated cell death caused by PM2.5. In addition, tectoridin prevented lipid peroxidation, iron accumulation and ferroptosis in vitro, but in siNrf2‐treated cells, these effects almost disappeared. In addition, tectoridin effectively mitigated PM2.5‐induced respiratory system damage, as evaluated by HE, PAS, and inflammatory factors. Tectoridin also augmented the antioxidative Nrf2 signalling pathway and prevented changes in ferroptosis‐related morphological and biochemical indicators, including MDA levels, GSH depletion and GPX4 and xCT downregulation, in PM2.5‐induced lung injury. However, the effects of tectoridin on ferroptosis and respiratory injury were almost abolished in Nrf2‐KO mice.Conclusion and ImplicationsOur data proposed the protective effect of Nrf2 activation on PM2.5‐induced lung injury by inhibiting ferroptosis‐mediated lipid peroxidation and highlight the potential of tectoridin as a PM2.5‐induced lung injury treatment.
Aim: The underlying mechanisms by which circular RNAs (circRNAs) regulate non-small-cell lung cancer (NSCLC) progression remain elusive. This study investigated the role of circRNA circTTBK2 in NSCLC tumorigenesis. Materials & methods: Quantitative reverse transcriptase polymerase chain reaction analysis of circTTBK2 in NSCLC tissues and cell lines was performed. Cell proliferation, migration, invasion and tumorigenesis were confirmed in vitro and in vivo using CCK-8, EdU incorporation, Transwell assays and xenograft technique. The circTTBK2/miR-873-5p/TEAD1/DERL1 axis was verified by RNA immunoprecipitation, chromatin immunoprecipitation and luciferase reporter assays. Results: Overexpressed circTTBK2 in NSCLC tissues indicates poor prognosis of NSCLC patients. circTTBK2 harbors miR-873-5p, and miR-873-5p directly targets TEAD1. TEAD1 transcriptionally activates DERL1. Conclusion: This study revealed a novel machinery of circTTBK2/miR-873-5p/TEAD1/DERL1 for NSCLC tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.