This study aimed to explore the protective effects of a Chinese herbal formula, Jinshui Huanxian formula (JHF), on experimental pulmonary fibrosis and its underlying mechanisms. After being treated with single dose of bleomycin (5 mg/kg) intratracheally, rats were orally administered with JHF and pirfenidone from day 1 to 42, then sacrificed at 7, 14, 28, or 42 days post-bleomycin instillation. JHF ameliorated bleomycin-induced pathological changes, collagen deposition in the rat lung and recovered pulmonary function at different days post-bleomycin instillation. In lungs of JHF-treated rats, the levels of total superoxide dismutase, catalase and glutathione were higher, and myeloperoxidase and methane dicarboxylic aldehyde were lower than those in vehicle-treated rats, respectively. Additionally, JHF inhibited the expression of NADPH oxidase 4 (NOX4) and increased the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) in lung tissues. In vitro, JHF and ruscogenin, a compound of Ophiopogonis Radix contained in JHF, significantly inhibited transforming growth factor β1 (TGF-β1)-induced differentiation of fibroblasts. Furthermore, JHF markedly decreased the level of reactive oxygen species in TGF-β1-induced fibroblast. In line with this, upregulation of NAD(P)H: quinone oxidoreductase 1 and heme oxygenase 1, and downregulation of NOX4 were found in JHF-treated fibroblast induced by TGF-β1. While on the other hand, Nrf2 siRNA could suppress the JHF-mediated inhibition effect on alpha-smooth muscle actin (α-SMA), and FN1 expression induced by TGF-β1 in fibroblasts. These results indicated that JHF performed remarkably therapeutic and long-term effects on pulmonary fibrosis in rat and suppressed the differentiation of fibroblast into myofibroblast through reducing the oxidative response by upregulating Nrf2 signaling. It might provide a new potential natural drug for the treatment of pulmonary fibrosis.
A new oleanane-type triterpene from Ardisia lindleyana D.Dietr and its cytotoxic activity Abstract:A new oleanane-type triterpene, ardisiapunine A (1), together with eight known compounds were isolated from the roots of Ardisia lindleyana D.Dietr. Their chemical structures were determined by means of spectroscopic methods including HR-ESI-MS and (1D, 2D) NMR data. The absolute configuration of compound 1 was established by a single-crystal X-ray diffraction experiment. The new compound is an unusual oleanane-type triterpene bearing an acetal and a C-13-C-18 double bond. The cytotoxicity of all isolated compounds were evaluated using four human cancer cell lines, including A549, HepG2, HeLa and U87. The new compound 1 and compound 2 were weakly active but the known compound 6 exhibited a high cytotoxicity compared to cisplatin.
Two new compounds, ardisiapunine B (1) and ardisiapunine C (2), were isolated from Ardisia lindleyana D. Dietr. Their structures were examined using HR–ESI–MS, IR, (1D, 2D) NMR spectroscopic analyses, single–crystal X–ray diffraction, and ECD calculation. It was found that the two new compounds belong to unusual oleanane-type triterpenes, with compound 1 bearing an acetal unit and a C–13–C–18 double bond, and compound 2 bearing a C–28 aldehyde group and a C–18–C–19 double bond. The anti-inflammatory properties of compounds 1 and 2 were tested on NO production and cellular morphology using RAW264.7 cells, and their anti-tumor properties were tested on cytotoxic activities, cellular morphology, cell apoptosis, and cell cycle. The results showed that compound 1 exhibited a potent cytotoxicity against HepG2 cell lines with an IC50 of 12.40 μM. Furthermore, it is possible that compound 1 inhibits cell proliferation by blocking the cell G2/M phase and promoting cell apoptosis. Compound 2 exhibited a potential anti-inflammatory activity by decreasing the production of NO in LPS–stimulated RAW264.7 cells. Comparative analysis of the structures of compounds 1 and 2 revealed that the acetal structure and double bond positions were the main differences between them, and these are presumed to be the main reasons for the extreme differences in their cytotoxicity and anti-inflammatory activities. From these new findings, two promising lead compounds were identified for the future development of potential anti–inflammatory or anti–tumor agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.