Stratigraphic models typically predict accumulation of deep-water sands where coeval shelf-edge deltas are developed in reduced-accommodation and/or high-sediment-supply settings. On seismic data, these relationships are commonly investigated on a small number of clinothems, with a limited control on their lateral variability. Advanced full-volume seismic interpretation methods now offer the opportunity to identify high-order (i.e., 4th to 5th) seismic sequences (i.e., clinothems) and to evaluate the controls on shelf-to-basin sediment transfer mechanisms and deep-water sand accumulation at these high-frequency scales. This study focuses on the Lower Barrow Group (LBG), a shelf margin that prograded in the Northern Carnarvon Basin (North West Shelf, Australia) during the Early Cretaceous. Thanks to high-resolution 3D seismic data, 30 clinothems (average time span of ∼ 47,000 years) from the D. lobispinosum interval (142.3–140.9 Ma) are used to establish quantitative and statistical relationships between the shelf-margin architecture, paleoshoreline processes, and deep-water system types (i.e., quantitative 3D seismic stratigraphy). The results confirm that low values of rate of accommodation/rate of sediment supply (δA/δS) conditions on the shelf are associated with sediment bypass, whereas high δA/δS conditions are linked to increasing sediment storage on the shelf. However, coastal process regimes at the shelf edge play a more important role in the behavior of deep-water sand delivery. Fluvial-dominated coastlines are typically associated with steep slope gradients and more mature, longer run-out turbidite systems. In contrast, wave-dominated shorelines are linked to gentle slope gradients, with limited development of turbidite systems (except rare sheet sands and mass-transport deposits), where longshore drift currents contributed to shelf-margin accretion through the formation of extensive strandplains. In this context, reduced volumes of sand were transported offshore and mud belts were accumulated locally. This study highlights that variations from fluvial- to wave-dominated systems can result in significant lateral changes in shelf-margin architecture (i.e., slope gradient) and impact the coeval development of deep-water systems (i.e., architectural maturity). By integrating advanced tools in seismic interpretation, quantitative 3D seismic stratigraphy represents a novel approach in assessing at high resolution the controls on deep-water sand delivery, and potentially predicting the type and location of reservoirs in deep water based on the shelf-margin architecture and depositional process regime.
Following decades of technological innovation, geologists now have access to extensive 3D seismic surveys across sedimentary basins. Using these voluminous data sets to better understand subsurface complexity relies on developing seismic stratigraphic workflows that allow very high-resolution interpretation within a cost-effective timeframe. We have developed an innovative 3D seismic interpretation workflow that combines full-volume and semi-automated horizon tracking with high-resolution 3D seismic stratigraphic analysis. The workflow consists of converting data from seismic (two-way traveltime) to a relative geological time (RGT) volume, in which a relative geological age is assigned to each point of the volume. The generation of a horizon stack is used to extract an unlimited number of chronostratigraphic surfaces (i.e., seismic horizons). Integrated stratigraphic tools may be used to navigate throughout the 3D seismic data to pick seismic unconformities using standard seismic stratigraphic principles in combination with geometric attributes. Here, we applied this workflow to a high-quality 3D seismic data set located in the Northern Carnarvon Basin (North West Shelf, Australia) and provided an example of high-resolution seismic stratigraphic interpretation from an Early Cretaceous shelf-margin system (Lower Barrow Group). This approach is used to identify 73 seismic sequences (i.e., clinothems) bounded by 74 seismic unconformities. Each clinothem presents an average duration of approximately 63,000 years (fifth stratigraphic order), which represents an unprecedented scale of observation for a Cretaceous depositional system on seismic data. This level of interpretation has a variety of applications, including high-resolution paleogeographical reconstructions and quantitative analysis of subsurface data. This innovative workflow constitutes a new step in seismic stratigraphy because it enables interpreters to map seismic sequences in a true 3D environment by taking into account the full variability of depositional systems at high frequency through time and space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.