Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site.
Stratigraphic models typically predict accumulation of deep-water sands where coeval shelf-edge deltas are developed in reduced-accommodation and/or high-sediment-supply settings. On seismic data, these relationships are commonly investigated on a small number of clinothems, with a limited control on their lateral variability. Advanced full-volume seismic interpretation methods now offer the opportunity to identify high-order (i.e., 4th to 5th) seismic sequences (i.e., clinothems) and to evaluate the controls on shelf-to-basin sediment transfer mechanisms and deep-water sand accumulation at these high-frequency scales. This study focuses on the Lower Barrow Group (LBG), a shelf margin that prograded in the Northern Carnarvon Basin (North West Shelf, Australia) during the Early Cretaceous. Thanks to high-resolution 3D seismic data, 30 clinothems (average time span of ∼ 47,000 years) from the D. lobispinosum interval (142.3–140.9 Ma) are used to establish quantitative and statistical relationships between the shelf-margin architecture, paleoshoreline processes, and deep-water system types (i.e., quantitative 3D seismic stratigraphy). The results confirm that low values of rate of accommodation/rate of sediment supply (δA/δS) conditions on the shelf are associated with sediment bypass, whereas high δA/δS conditions are linked to increasing sediment storage on the shelf. However, coastal process regimes at the shelf edge play a more important role in the behavior of deep-water sand delivery. Fluvial-dominated coastlines are typically associated with steep slope gradients and more mature, longer run-out turbidite systems. In contrast, wave-dominated shorelines are linked to gentle slope gradients, with limited development of turbidite systems (except rare sheet sands and mass-transport deposits), where longshore drift currents contributed to shelf-margin accretion through the formation of extensive strandplains. In this context, reduced volumes of sand were transported offshore and mud belts were accumulated locally. This study highlights that variations from fluvial- to wave-dominated systems can result in significant lateral changes in shelf-margin architecture (i.e., slope gradient) and impact the coeval development of deep-water systems (i.e., architectural maturity). By integrating advanced tools in seismic interpretation, quantitative 3D seismic stratigraphy represents a novel approach in assessing at high resolution the controls on deep-water sand delivery, and potentially predicting the type and location of reservoirs in deep water based on the shelf-margin architecture and depositional process regime.
This study investigates the stratigraphic evolution of the Late Oligocene-Early Miocene carbonate platforms of the Yadana area (offshore Myanmar). Well data, regional 2D and local 3D seismic surveys allow the identification of three shallow-water carbonate platforms (Yadana, 3DF and 3DE) showing various morphologic and stratigraphic patterns influenced by the presence of a paleohigh. The identification of seven seismic sequences in the Yadana area constrains the stratigraphic evolution in three stages: (1) development of aggrading attached and isolated platforms during the Chattian; (2) a period of platform emersion during the Oligocene-Miocene transition; (3) drowning of the smaller buildup (3DE) associated with km-scale backstepping on the large platforms (3DF and Yadana) during the Aquitanian. The Aquitanian marks the onset of renewed volcanic activity associated with the development of fringing carbonate reefs during the Burdigalian. The rapid (∼6 My) development of these wide (∼5-70 km) and thick (∼300-850 m) carbonate platforms has been mainly controlled by the subsidence. However, the results highlight a strong overprint of eustatic fluctuations on the rates of change in accommodation, and hence on the stratigraphic architecture of the carbonate platforms. Based on an alternative model for the Cenozoic geodynamic evolution of the Yadana area, our results suggest that the platforms developed on a volcanic ridge of hotspot origin located in the Indian Ocean and not on a volcanic arc. Subduction jump processes are interpreted to have played a key role in the demise of all platforms by drastically changing the paleoenvironmental conditions during the Early Miocene, and led to the present-day location of the Yadana Ridge in a back-arc setting. The carbonate platforms from the Yadana area are thus a representative example of the interplay between global mechanisms and local paleoenvironmental parameters on carbonate platform initiation, growth and demise. Highlights ► Three carbonate platforms were developed in the Yadana area during the Late Oligocene-Early Miocene. ► These platforms show attached and isolated settings. ► Eustastic fluctuations affected their stratigraphic architecture. ► They were developed on a volcanic ridge of hotspot origin (Maldives type). ► Local environmental perturbations participated in the platform demise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.