We consider a packing problem that arises in a direct-shipping system in the food and beverage industry: Trucks are the containers, and products to be distributed are the items. The packing is constrained by two independent quantities, weight (e.g., measured in kg) and volume (number of pallets). Additionally, the products are grouped into the three categories: standard, cooled, and frozen (the latter two require refrigerated trucks). Products of different categories can be transported in one truck using separated zones, but the cost of a truck depends on the transported product categories. Moreover, splitting orders of a product should be avoided so that (un-)loading is simplified. As a result, we seek for a feasible packing optimizing the following objective functions in a strictly lexicographic sense: minimize the (1) total number of trucks; (2) number of refrigerated trucks; (3) number of refrigerated trucks which contain frozen products; (4) number of refrigerated trucks which also transport standard products; (5) and minimize splitting. This is a real-world application of a bin-packing problem with cardinality constraints a.k.a. the two-dimensional vector packing problem with additional constraints. We provide a heuristic and an exact solution approach. The heuristic meta-scheme considers the multi-compartment and item fragmentation features of the problem and applies various problem-specific heuristics. The exact solution algorithm covering all five stages is based on branch-and-price using stabilization techniques exploiting dual-optimal inequalities. Computational results on real-world and difficult self-generated instances prove the applicability of our approach.
Many manufactures are shifting from classical production environments with large batch sizes towards mixed-model assembly lines due to increasing product variations and highly individual customer requests. However, an assembly line should still be run with constant speed and cycle time. Clearly, the consecutive production of different models will cause a highly unbalanced temporal distribution of workload. This can be avoided by moving some assembly steps to pre-levels thus smoothing out the utilization of the main line. In the resulting multi-level assembly line the sequencing decision on the main line has to take into account the balancing of workload for all pre-levels. Otherwise, the modules or parts delivered from the pre-levels would cause congestion of the main line. One planning strategy aims at mixing the models on the main line to avoid blocks of identical units. In this contribution we compare two different realizations for this approach. On one hand we present a mixed-integer programming model (MIP), strengthen it by adding valid inequalities and enrich it with a number of relevant practical extensions. Also the actual objective of explicitly balancing pre-level workloads is considered. On the other hand, we illustrate how this strategy could be realized in an advanced planning system linked to an enterprise resource planning system, namely SAP APO. Finally, we perform a computational study to investigate the possibilities and limitations of MIP models and the realization in SAP APO. The experiments rely on a real-world production planning problem of a company producing engines and gearboxes. Keywords Multi-level production system • Load balancing • Model-mix planning • Mixed-integer programming • SAP APO This research was performed in cooperation with scc EDV-Beratung AG, Vienna, Austria, and partially financed by the Austrian Research Promotion Agency (FFG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.