The photocatalytic and plasmonic photothermal cancer cell-killing activity of the metallic Au-capped TiO(2) (Au@TiO(2)) composite colloidal nanopellets has been investigated on HeLa cells under UV-visible (350-600 nm) light irradiation. The Au@TiO(2) composite nanopellets with the uniform Au-capped TiO(2) structure were successfully synthesized by simple reduction of HAuCl(4) on the surface of TiO(2) nanoparticles. The morphological structure and surface properties of Au@TiO(2) were characterized by using UV-visible absorption spectroscopy, TEM, SEM, XPS, EDX and XRD analyses. The formation of hydroxyl radicals (˙OH) was confirmed by photoluminescence (PL) spectra. The photocatalytic and photothermal cell-killing activity of the Au@TiO(2) nanopellets was found to vary with the molar ratio of Au to TiO(2). The direct involvement of the metal particles in mediating the electron transfer from the photoexcited TiO(2) under the band gap excitation is considered to carry out the efficient photocatalytic reaction on the cells. The plasmonic absorption spectra of Au@TiO(2) suspensions were also measured for the evaluation of photothermal cell killing. The charge separation, the interfacial charge-transfer and photothermal activity promoted the photocatalytic-photothermal cancer-cell killing more than TiO(2) alone. The cytotoxic effect of Au@TiO(2) nanopellets with low concentration of gold (TiO(2) : Au molar ratio > 1 : 1) was found to be 100%, whereas that of the commercial TiO(2) (P25) was ca. 50%. The comparative study of the cell viability using Au alone and TiO(2) alone revealed that the synergistic effect of photocatalytic hydroxyl radical formation and Au-plasmonic photothermal heat generation plays a vital role in the cancer cell killing. A plausible mechanism was also proposed for photocatalytic cancer cell killing based on the obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.