The Kilowatt Reactor Using Stirling TechnologY (KRUSTY) was a reactor design, development, and test program to demonstrate the nuclear operation of a Kilopower reactor. Kilopower systems are intended to provide between 1 and 10 kW(electric) in space, or on the surface of planets or moons, with a clear evolution to substantially higher power systems. KRUSTY was a prototype of a 1-kW(electric) highly enriched uranium-fueled Kilopower system. In March of 2018, KRUSTY successfully operated as a fission power system and was the first nuclear-powered operation of any truly new reactor concept in the United States in over 40 years. This paper discusses the design of the KRUSTY reactor along with the philosophy, goals, and engineering work that ultimately led to KRUSTY's success.
The Kilopower nuclear ground testing nicknamed KRUSTY (Kilopower Reactor Using Stirling TechnologY) was completed at the Nevada Nuclear Security Site (NNSS) on March 21, 2018. This full scale nuclear demonstration verified the Kilopower reactor neutronics during startup, steady state, and transient operations in a space simulated environment. This was the first space reactor test completed for fission power systems in over 50 years and marked a turning point in NASA's nuclear program. The completed reactor power system design incorporated flight prototypic materials and full-scale components in an effort to study the reactor dynamics at full power and significantly reduce follow on risk of a future flight demonstration. This design provided a unique opportunity for the power system to simulate several nominal and off-nominal mission scenarios that allowed the designers to verify that the reactor dynamics could tolerate many worst case conditions regarding reactor stability and control. The dynamic changes imposed on the reactor validated the ability of the reactor to load follow the power conversion system and passively control the fuel temperature and overall system stability. With successful completion of the KRUSTY experiment, the NASA/DOE team will evaluate the lessons learned throughout the project and apply them towards a flight demonstration of a Kilopower reactor.
Articles you may be interested inMulti channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm AIP Conf.Abstract. One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow preprototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW directdrive gas-cooled reactor in the Early Flight Fission -Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.