Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an oncofetal protein expressed in various cancers including leukemia. In this study, we assessed the role of IGF2BP1 in orchestrating leukemia stem cell properties. Tumor-initiating potential, sensitivity to chemotherapeutic agents and expression of cancer stem cell markers were assessed in a panel of myeloid, B-, and T-cell leukemia cell lines using gain-and loss-of-function systems, cross-linking immunoprecipitation (CLIP), and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) techniques. Here we report that genetic or chemical inhibition of IGF2BP1 decreases leukemia cells' tumorigenicity, promotes myeloid differentiation, increases leukemia cell death, and sensitizes leukemia cells to chemotherapeutic drugs. IGF2BP1 affects proliferation and tumorigenic potential of leukemia cells through critical regulators of self-renewal HOXB4 and MYB and through regulation of expression of the aldehyde dehydrogenase, Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Receptors for advanced glycation end-products (RAGE) are multiligand surface receptors detected abundantly in pulmonary tissue. Our previous work revealed increased RAGE expression in cells and lungs exposed to tobacco smoke and RAGE-mediated cytokine expression via proinflammatory mechanisms involving NF-κB. RAGE expression is elevated in various pathological states, including chronic obstructive pulmonary disease; however, precise contributions of RAGE to the progression of emphysema and pulmonary inflammation in the adult lung are unknown. In the current study, we generated a RAGE transgenic (RAGE TG) mouse and conditionally induced adult alveolar epithelium to overexpress RAGE. RAGE was induced after the period of alveologenesis, from weaning (20 d of age) until animals were killed at 50, 80, and 110 days (representing 30, 60, and 90 d of RAGE overexpression). Hematoxylin and eosin staining and mean chord length revealed incremental dilation of alveolar spaces as RAGE overexpression persisted. TUNEL staining and electron microscopy confirmed increased apoptosis and blebbing of alveolar epithelium in lungs from RAGE TG mice when compared with control mice. Immunohistochemistry for matrix metalloproteinase 9 revealed an overall increase in matrix metalloproteinase 9, which correlated with decreased elastin expression in RAGE TG mice. Furthermore, RAGE TG mice manifested significant inflammation measured by elevated bronchoalveolar lavage protein, leukocyte infiltration, and secreted cytokines. These data support the concept that innovative transgenic mice that overexpress RAGE may model pulmonary inflammation and alveolar destabilization independent of tobacco smoke and validate RAGE signaling as a target pathway in the prevention or attenuation of smoke-related inflammatory lung diseases.
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.