Background: Geophytes possess specialized storage organs -bulbs, tubers, corms or rhizomes, which allow their survival during unfovarable periods and provide energy support for sprouting and sexual and vegetative reproduction. Bulbing and flowering of the geophyte depend on the combined effects of the internal and external factors, especially temperature and photoperiod. Many geophytes are extensively used in agriculture, but mechanisms of regulation of their flowering and bulbing are still unclear. Results: Comparative morpho-physiological and transcriptome analyses and quantitative validation of gene expression shed light on the molecular regulation of the responses to vernalization in garlic, a typical bulbous plant. Long dark cold exposure of bulbs is a major cue for flowering and bulbing, and its interactions with the genetic makeup of the individual plant dictate the phenotypic expression during growth stage. Photoperiod signal is not involved in the initial nuclear and metabolic processes, but might play role in the later stages of development, flower stem elongation and bulbing. Vernalization for 12 weeks at 4°C and planting in November resulted in flower initiation under short photoperiod in December-January, and early blooming and bulbing. In contrast, non-vernalized plants did not undergo meristem transition. Comparisons between vernalized and non-vernalized bulbs revealed~14,000 differentially expressed genes.Conclusions: Low temperatures stimulate a large cascades of molecular mechanisms in garlic, and a variety of flowering pathways operate together for the benefit of meristem transition, annual life cycle and viable reproduction results.The circadian clock appears to play a central role in the transition of the meristem from vegetative to reproductive stage in bulbous plant, serving as integrator of the low-temperature signals and the expression of the genes associated with vernalization, photoperiod and meristem transition. The reserved photoperiodic pathway is integrated at an upstream point, possibly by the same receptors. Therefore, in bulb, low temperatures stimulate cascades of developmental mechanisms, and several genetic flowering pathways intermix to achieve successful sexual and vegetative reproduction.
Juvenile and vegetative adult shoot apical meristems (SAM) are actively involved in acquisition of flowering competence, while the embryonic SAM is regarded as “responsible” only for germination. Comparative analyses of imbibed and stratified seeds of garlic Allium sativum show that only stratified seedlings produced bulbs and flower stems at the end of the season. Since the seed morphology of stratified and non-stratified seeds prior to sowing was similar, the differences are attributed to the molecular alterations in the embryonic SAM. Functional annotation analysis of 3000 differentially expressed genes suggests that seed imbibition reactivates the embryonic cell cycle, initiates the metabolism, and primes garlic seed germination. Stratification enhances DNA modifications, biosynthesis, cellular transport, and tissue development. Similar to vernalization of the vegetative buds, stratification of the embryonic SAM resulted in altered expression of meristem-identity and flowering homologs. Phase transitions from seed germination to flowering and bulbing in A. sativum are tightly connected, and possibly associated with downregulation of specific flowering repressor(s). The embryonic SAM plays an important role not only in seed germination, but in the entire plant life cycle, providing the foundation for the genetic regulation of major functional shifts in metabolism and development.
Commercial cultivars of garlic are sterile, and therefore efficient breeding of this crop is impossible. Recent restoration of garlic fertility has opened new options for seed production and hybridization. Transcriptome catalogs were employed as a basis for garlic genetic studies, and in 2020 the huge genome of garlic was fully sequenced. We provide conjoint genomic and transcriptome analysis of the regulatory network in flowering garlic genotypes. The genome analysis revealed phosphatidylethanolamine-binding proteins (PEBP) and LEAFY (LFY) genes that were not found at the transcriptome level. Functions of TFL-like genes were reduced and replaced by FT-like homologs, whereas homologs of MFT-like genes were not found. The discovery of three sequences of LFY-like genes in the garlic genome and confirmation of their alternative splicing suggest their role in garlic florogenesis. It is not yet clear whether AsLFY1 acts alone as the “pioneer transcription factor” or AsLFY2 also provides these functions. The presence of several orthologs of flowering genes that differ in their expression and co-expression network advocates ongoing evolution in the garlic genome and diversification of gene functions. We propose that the process of fertility deprivation in garlic cultivars is based on the loss of transcriptional functions of the specific genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.