We are developing a high-performance brain PET scanner, jPET-D4, which provides 4-layer depth-of-interaction (DOI) information. The scanner is designed to achieve not only high spatial resolution but also high scanner sensitivity with the DOI information obtained from multi-layered thin crystals. The scanner has 5 rings of 24 detector blocks each, and each block consists of 1024 GSO crystals of 2.9 mm 2.9 mm 7.5 mm, which are arranged in 4 layers of 16 16 arrays. At this stage, a pair of detector blocks and a coincidence circuit have been assembled into an experimental prototype gantry. In this paper, as a preliminary experiment, we investigated the performance of the jPET-D4's spatial resolution using the prototype system. First, spatial resolution was measured from a filtered backprojection reconstructed image. To avoid systematic error and reduce computational cost in image reconstruction, we applied the DOI compression (DOIC) method followed by maximum likelihood expectation maximization that we had previously proposed. Trade-off characteristics between background noise and resolution were investigated because improved spatial resolution is possible only when enhanced noise is avoided. Experimental results showed that the jPET-D4 achieves better than 3mm spatial resolution over the field-of-view.Index Terms-Depth-of-interaction (DOI), maximum likelihood expectation maximization (ML-EM), positron emission tomography (PET), statistical image reconstruction.
Annihilation photon acollinearity is a fundamental but little investigated problem in positron emission tomography (PET). In this paper, the cause of the angular deviation from 180.00 degrees is described as well as how to evaluate it under conditions of a spatially distributed radiation source and a limited acquisition time for the human body. A relationship between the shape of the photopeak spectrum and the angular distribution is formulated using conservation laws of momentum and energy over the pair annihilation. Then the formula is used to evaluate the acollinearity for a pool phantom and the human body with FDG injected. The angular distribution for the pool phantom agrees well with that for pure water which had been directly measured by Colombino et al in 1965 (Nuovo Cimento 38 707-23), and also with that for the human body determined in this study. Pure water can be considered as a good approximation of the human body regarding the angular deviation. The blurring coefficient to be multiplied by the ring diameter in calculations of the PET spatial resolution is experimentally determined for the first time as 0.00243 +/- 0.00014; this is 10% larger than the value widely used by investigators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.