Background and purpose: Substance P (SP), a representative member of the tachykinin family, is involved in nociception under physiological and pathological conditions. Recently, hemokinin-1 (HK-1) was identified as a new member of this family. Although HK-1 acts on NK 1 tachykinin receptors that are thought to be innate for SP, the roles of HK-1 in neuropathic pain are still unknown. Experimental approach: Using rats that had been subjected to chronic constrictive injury (CCI) of the sciatic nerve as a neuropathic pain model, we examined the changes in expression of SP-and HK-1-encoding genes (TAC1 and TAC4, respectively) in the L4/L5 spinal cord and L4/L5 dorsal root ganglia (DRGs) in association with changes in pain-related behaviours in this neuropathic pain state. Key results: The TAC4 mRNA level was increased on the ipsilateral side of the dorsal spinal cord, but not in DRGs, at day 3 after CCI. In contrast, the TAC1 mRNA level was significantly increased in the DRGs at day 3 after CCI without any changes in the dorsal spinal cord. Analysis of a cultured microglial cell line revealed the presence of TAC4 mRNA in microglial cells. Minocycline, an inhibitor of microglial activation, blocked the increased expression of TAC4 mRNA after CCI and inhibited the associated pain-related behaviours and microglial activation in the spinal cord.
Conclusions and implications:The present results suggest that HK-1 expression is increased at least partly in activated microglial cells after nerve injury and is clearly involved in the early phase of neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.