Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats 1 . Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published 2,3 , analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination 4-6 and developmental genetics 7 . In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including 2,900 new genes, using 59-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of 50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.We applied the whole-genome shotgun approach to an inbred strain, , derived from the southern Japanese population, as the main target. A total of 13.8 million reads amounting to approximately 10.6-fold genome coverage were obtained from the shotgun plasmid, fosmid and bacterial artificial chromosome (BAC) libraries. A newly developed RAMEN assembler was used to process the shotgun reads to generate contigs and scaffolds. The N50 values (50% of nucleotides in an assembly are in scaffolds-or contigs-longer than or equal to the N50 value) are ,1.41 megabases (Mb) for scaffolds and ,9.8 kilobases (Kb) for contigs. The total length of the contigs reached 700.4 Mb, which, from now on, we refer to as the medaka genome size.To construct ultracontigs, the scaffolds were integrated with the medaka genetic map by using SNP markers. For this purpose, we further obtained about 2.8-fold coverage of shotgun reads from another inbred strain HNI (refs 9, 10), which is derived from the northern Japanese population. The reads were assembled by RAMEN to scaffolds covering 648 Mb. Aligning the HNI contigs with the HdrR genome using BLASTZ 11 , we identified 16.4 million SNPs as well as 1.40 million insertions and 1.45 million deletions in non-repetitive regions (Supplementary Table 2). We selected 2,401 SNPs and genetically mapped them onto medaka chromosomes using a backcross panel between the...
Recent studies have revealed that a cilium-generated liquid flow in the node has a crucial role in the establishment of the left-right (LR) axis in the mouse. In fish, Kupffer's vesicle (KV), a teleost-specific spherical organ attached to the tail region, is known to have an equivalent role to the mouse node during LR axis formation. However, at present, there has been no report of an asymmetric gene expressed in KV under the control of fluid flow. Here we report the earliest asymmetric gene in teleost KV, medaka charon, and its regulation. Charon is a member of the Cerberus/DAN family of proteins, first identified in zebrafish. Although zebrafish charon was reported to be symmetrically expressed in KV, medaka charon displays asymmetric expression with more intense expression on the right side. This asymmetric expression was found to be regulated by KV flow because symmetric and up-regulated charon expression was observed in flow-defective embryos with immotile cilia or disrupted KV. Taken together, medaka charon is a reliable gene marker for LR asymmetry in KV and thus, will be useful for the analysis of the early steps downstream of the fluid flow.
The medaka is becoming an attractive model organism for the study of vertebrate early development and organogenesis and large-scale mutagenesis projects that are aimed at creating developmentally defective mutants are now being conducted by several groups in Japan. To strengthen the study of medaka developmental genetics, we have conducted a large-scale isolation of ESTs from medaka embryos and developed tools that facilitate mutant analysis. In this study, we have characterized a total of 132,082 sequences from both ends of cloned insert cDNAs from libraries generated at different stages of medaka embryo development. Clustering analysis with 3-prime sequences finally identified a total of 12,429 clusters. As a pilot analysis, 924 clusters were subjected to in situ hybridization to determine the spatial localization of their transcripts. Using EST sequence data generated in the present study, a 60-mer oligonucleotide microarray with 8,091 unigenes (Medaka Microarray 8K) was constructed and tested for its usefulness in expression profiling. Furthermore, we have developed a rapid and reliable mutant mapping system using a set of mapped EST markers (M-marker 2003) that covers the entire medaka genome. These resources will accelerate medaka mutant analyses and make an important contribution to the medaka genome project.
Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.