a b s t r a c tSpectroscopy is emerging as a technique that can expand the envelope of modern oceanographic sensors. The selectivity of spectroscopic techniques enables a single instrument to measure multiple components of the marine environment and can form the basis for versatile tools to perform in situ geochemical analysis. We have developed a deep-sea laser-induced breakdown spectrometer (ChemiCam) and successfully deployed the instrument from a remotely operated vehicle (ROV) to perform in situ multi-element analysis of both seawater and mineral deposits at depths of over 1000 m. The instrument consists of a long-nanosecond duration pulse-laser, a spectrometer and a high-speed camera. Power supply, instrument control and signal telemetry are provided through a ROV tether. The instrument has two modes of operation. In the first mode, the laser is focused directly into seawater and spectroscopic measurements of seawater composition are performed. In the second mode, a fiberoptic cable assembly is used to make spectroscopic measurements of mineral deposits. In this mode the laser is fired through a 4 m long fiber-optic cable and is focused onto the target's surface using an optical head and a linear stage that can be held by a ROV manipulator. In this paper, we describe the instrument and the methods developed to process its measurements. Exemplary measurements of both seawater and mineral deposits made during deployments of the device at an active hydrothermal vent field in the Okinawa trough are presented. Through integration with platforms such as underwater vehicles, drilling systems and subsea observatories, it is hoped that this technology can contribute to more efficient scientific surveys of the deep-sea environment.
Long-lasting phosphorescence is observed in Ce3+-doped Ca2Al2SiO7 (CASM) and CaYAl3O7 (CYAM) crystals at room temperature. UV irradiation at 365 nm produces broadband emissions with peaks at 417 nm for CASM and 425 nm for CYAM, which persist for not less than 1 h after the removal of the irradiating light. Based on the time dependence of the intensity of the phosphorescence, the long-lasting phosphorescence in these crystals is considered to be due to the electron–hole recombination at shallow traps, which occurs by a thermally activated process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.