We conducted the first successful demonstration of an adiabatic microprocessor based on unshunted Josephson junction (JJ) devices manufactured using a Nb/AlO x /Nb superconductor IC fabrication process. It is a hybrid of RISC and dataflow architectures operating on 4-b data words. We demonstrate register file R/W access, ALU execution, hardware stalling, and program branching performed at 100 kHz under the cryogenic temperature of 4.2 K. We also successfully demonstrated a highspeed breakout chip of the microprocessor execution units up to 2.5 GHz. We use a logic primitive called the adiabatic quantumflux-parametron (AQFP), which has a switching energy of 1.4 zJ per JJ when driven by a four-phase 5-GHz sinusoidal ac-clock at 4.2 K. These demonstrations show that AQFP logic is capable of both processing and memory operations and that we have a path toward practical adiabatic computing operating at highclock rates while dissipating very little energy.
We present a comprehensive overview of a design methodology and environment that we developed to enable the implementation of microprocessors and other complex logic circuits using the adiabatic quantum-flux-parametron (AQFP) superconductor logic family. The design environment is catered for both the AIST 10 kA cm −2 Nb high-speed standard process as well as the AIST 2.5 kA cm −2 Nb standard process (STP2). We detail each aspect of the design flow, highlighting improvements in cell design, and new developments in circuit retiming to reduce the number of synchronizing buffers in the circuit datapath. With retiming, we expect a 14-37% reduction in the overall Josephson junction (JJ) count for some benchmarks. Finally, we show the successful experimental demonstration of an arithmetic logic unit and data shifter for an AQFP microprocessor using the established methodology and environment. The demonstrated circuits show full functionality and wide excitation current margins of nearly ±30%, which corresponds well with simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.