Porcine circovirus type 3 (PCV3) was initially reported in 2016 in the United States of America. Since then, the virus has been detected on swine farms in Poland, South Korea, and China using PCR. However, a serological survey of PCV3 in pig populations has never been conducted. In this study, for the first time, we established an indirect enzyme-linked immunosorbent (ELISA) assay and performed a national retrospective serological survey for PCV3. Our results showed that the PCV3-postive rate increased from 22.35% to 51.88% between 2015 and 2017. The above results suggest PCV3 has spread widely in China with increased positive rates since 2015.
Porcine reproductive and respiratory syndrome virus (PRRSV) has varied constantly and circulated in the pig industry worldwide. The prevention and control of porcine reproductive and respiratory syndrome (PRRS) is complicated. A visual, sensitive and specific diagnostic method is advantageous to the control of PRRS. The collateral cleavage activity of LwCas13a is activated to degrade non‐targeted RNA, when crRNA of LwCas13a bond to target RNA. The enhanced Cas13a detection is the combination of collateral cleavage activity of LwCas13a and recombinase polymerase amplification (RPA). In this study, the enhanced Cas13a detection for PRRSV was established. The novel method was an isothermal detection at 37°C, and the detection can be used for real‐time analysis or visual readout. The detection limit of the enhanced Cas13a detection was 172 copies/μl, and there were no cross‐reactions with porcine circovirus 2, porcine parvovirus, classical swine fever virus and pseudorabies virus. The enhanced Cas13a detection can work well in clinical samples. In summary, a visual, sensitive and specific nucleic acid detection method based on CRISPR‐Cas13a was developed for PRRSV.
Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.