Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but placenta appears to be an alternative and more readily available source. This study comprehensively compared human placenta-derived MSC (hpMSC) and human bone marrow-derived MSC (hbmMSC) in terms of cell characteristics, optimal growth conditions and in vivo safety specifically to determine if hpMSC could represent a source of human MSC for clinical trial. MSC were isolated from human placenta (hpMSC) and human bone marrow (hbmMSC) and expanded ex vivo using good manufacturing practice-compliant reagents. hpMSC and hbmMSC showed similar proliferation characteristics in different basal culture media types, fetal calf serum (FCS) concentrations, FCS heat-inactivation experiments, flask types and media replacement responsiveness. However, hpMSC and hbmMSC differed with respect to their proliferation capabilities at different seeding densities, with hbmMSC proliferating more slowly than hpMSC in every experiment. hpMSC had greater long-term growth ability than hbmMSC. MSC from both sources exhibited similar light microscopy morphology, size, cell surface phenotype, and mesodermal differentiation ability with the exception that hpMSC consistently appeared less able to differentiate to the adipogenic lineage. A comparison of both hbmMSC and hpMSC from early and medium passage cultures using single-nucleotide polymorphism (SNP) GeneChip analysis confirmed GTG-banding data that no copy number changes had been acquired during sequential passaging. In three of three informative cases (in which the gender of the delivered baby was male), hpMSC were of maternal origin. Neither hpMSC nor hbmMSC caused any acute toxicity in normal mice when injected intravenously at the same, or higher, doses than those currently used in clinical trials of hbmMSC. This study suggests that human placenta is an acceptable alternative source for human MSC and their use is currently being evaluated in clinical trials.
SummaryMesenchymal stem cells (MSC) are being used increasingly in clinical trials for a range of regenerative and inflammatory diseases. Bone marrow is the traditional source but is relatively inaccessible in large volume. MSC have now been derived from tissues other than bone marrow including placenta and adipose tissue. We have used placenta obtained after delivery as a source of MSC and have been unable to detect any marked differences from marrow-derived MSC in terms of cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability. This report described our manufacturing process for isolating and expanding placenta-derived human MSC and their safe infusion into the first patient in a clinical trial program of human placenta-derived MSC.
Preclinical studies have suggested that purified populations of CD1c (BDCA-1) blood-derived dendritic cells (BDC) loaded with tumor-specific peptides may be a feasible option for prostate cancer immunotherapy. We performed an open-label dose-finding Phase I study to evaluate the safe use of CD1c BDC in patients with advanced metastatic hormone refractory prostate cancer. HLA-A*0201-positive patients with advanced metastatic prostate cancer were recruited and consented. The vaccine was manufactured by pulsing autologous CD1c BDC, prepared by magnetic bead immunoselection from apheresed peripheral blood mononuclear cells, with a cocktail of HLA-A*0201-restricted peptides (prostate-specific antigen, prostate acid phosphatase, prostate specific membrane antigen, and control influenza peptide) and keyhole limpet hemocyanin. The vaccine was administered intradermally or intravenously and peripheral blood was taken at predetermined intervals for clinical and immunologic monitoring. The vaccine was manufactured with a median purity of 82% CD1c BDC and administered successfully to 12 patients. Each patient received between 1 and 5 × 10 fresh CD1c BDC on day 0, followed by cryopreserved product in the same dose on days 28 and 56. The vaccine was well tolerated in all patients, with the most frequent adverse events being grade 1-2 fever, pain, or injection-site reactions. Vaccination with CD1c BDC is therefore feasible, safe, and well tolerated in patients with advanced-stage metastatic prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.