The first example of a transition metal-catalyzed hetero-[5 + 2] cycloaddition reaction is described. Use of cyclopropyl imines as five-atom components, an alkyne as a two-carbon component, and a Rh(I) catalyst enables a new route to dihydroazepines. This new hetero-[5 + 2] cycloaddition works well with aldimines, ketimines, and with substituted cyclopropanes and affords the desired dihydroazepines in excellent yields as single regioisomers. Use of serial imine formation/aza-[5 + 2] cycloaddition generates the desired dihydroazepines in one operation from three commercially available starting materials. The reaction has been scaled to give gram quantities of dihydroazepine.
The Wittig reaction and related methods for synthesis of C=C double bonds belong to the standard repertoire of the synthetic chemist. Studies of asymmetric versions of these reactions have been increasing in recent years and applications of such processes to complex molecule synthesis have begun to emerge. In this review, we will emphasise the recent advances in developing methods and synthetic applications of these reactions, but earlier results will be covered as well to place the recent results in context.
A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different alpha-oxygen-substituted, racemic aldehydes were initially transformed by asymmetric HWE reactions into mixtures of two major alpha,beta-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution reactions with carbon, nitrogen, and oxygen nucleophiles. In this latter step, the respective (E) and (Z) alkene substrate isomers were observed to react with opposite stereospecificity: the (E) alkene reacted with retention and the (Z) alkene with inversion of stereochemistry with respect to both the allylic stereocenter and the alkene geometry. Thus, a single gamma-substituted ester was obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit of the iejimalides, a group of cytotoxic macrolides.
[reaction: see text] A racemic aldehyde can undergo parallel kinetic resolution (PKR) by simultaneous reaction with two different chiral phosphonates, differing either in the structure of the chiral auxiliary or in the structure of the phosphoryl group (i.e., one (E)- and one (Z)-selective reagent). This strategy allows conversion of a racemic aldehyde to two different, synthetically useful chiral products with essentially doubled material throughput and similar or improved selectivities as compared to conventional kinetic resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.