We report on lasing in rhodamine 6G-doped, conical polymeric microcavities with high quality factors fabricated on a silicon substrate. Threshold pump energies as low as 3 nJ are achieved by free-space excitation in the quasistationary pumping regime with lasing wavelengths around 600 nm. Finite element simulations confirm that lasing occurs in whispering gallery modes which corresponds well to the measured multimode laser-emission. The effect of dye concentration on lasing threshold and lasing wavelength is investigated and can be explained using a standard dye laser model.
Abstract:We report the fabrication of high-Q polymeric microdisks on silicon via direct laser writing utilizing two-photon absorption induced polymerization. The quality factors of the passive cavities are above 10 6 in the 1300 nm wavelength region. The flexible three-dimensional (3D) lithography method allows for the fabrication of different cavity thicknesses on the same substrate, useful for rapid prototyping of active and passive optical microcavities. Microdisk lasers are realized by doping the resist with dye, resulting in laser emission at visible wavelengths. ©2011 Optical Society of America
We report on the fabrication of high-Q microresonators made of low-loss, thermoplastic polymer poly(methyl methacrylate) (PMMA) directly processed on a silicon substrate. Using this polymer-on-silicon material in combination with a thermal reflow step enables cavities of conical geometry with an ultrasmooth surface. The cavity Q factor of these PMMA resonators is above 2×106 in the 1300 nm wavelength range. Finite element simulations show the existence of a variety of “whispering gallery” modes in these resonators explaining the complexity of the measured transmission spectra.
Optically coupled microcavities have emerged as photonic structures with promising properties for investigation of fundamental science as well as for applications. We report on the fabrication and spatially resolved spectroscopy of on-chip photonic molecule (PM) lasers consisting of two coupled, dye-doped polymeric microdisks on a silicon substrate. We investigate the fundamental lasing properties with focus on the spatial distribution of modes, the coupling dependent suppression of lasing modes, and in particular the application-oriented operation of these devices in aqueous environments. By depositing an additional polymer layer onto the lithographically structured cavities made of dye-doped poly(methyl methacrylate), coupling-gap widths below 150 nm with aspect ratios of the micro-/nanostructure exceeding 9 : 1 are achieved. This enables strong optical coupling at visible wavelengths despite relatively small resonator radii of 25 mm. The lasing properties of dye-doped PMs are investigated using spatially resolved micro-photoluminescence (m-PL) spectroscopy. This technique allows for the direct imaging of whispering-gallery modes (WGMs) in the photonics molecules. For subwavelength coupling gaps, we observe lasing from delocalized eigenstates of the PMs (termed in the following as super-modes). Using size-mismatched cavities, the lasing mode suppression for different coupling-gap widths is investigated. We further demonstrate single-mode lasing operation in aqueous environments with PMs, which are realized on a low-cost, polymer-on-silicon platform.
We report on a novel approach to realize on-chip microlasers, by applying highly localized and material-saving surface functionalization of passive photonic whispering gallery mode microresonators. We apply dip-pen nanolithography on a true three-dimensional structure. We coat solely the light-guiding circumference of pre-fabricated poly(methyl methacrylate) resonators with a multifunctional molecular ink. The functionalization is performed in one single fabrication step and simultaneously provides optical gain as well as molecular binding selectivity. This allows for a direct and flexible realization of on-chip microlasers, which can be utilized as biosensors in optofluidic lab-on-a-chip applications. In a proof-of-concept we show how this highly localized molecule deposition suffices for low-threshold lasing in air and water, and demonstrate the capability of the ink-lasers as biosensors in a biotin-streptavidin binding experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.