Significant progress in the development and commercialization of electrically conductive adhesives has been made. This makes shingling a very attractive approach for solar cell interconnection. In this study, we investigate the shading tolerance of two types of solar modules based on shingle interconnection: first, the already commercialized string approach, and second, the matrix technology where solar cells are intrinsically interconnected in parallel and in series. An experimentally validated LTspice model predicts major advantages for the power output of the matrix layout under partial shading. Diagonal as well as random shading of a 1.6-m 2 solar module is examined. Power gains of up to 73.8 % for diagonal shading and up to 96.5 % for random shading are found for the matrix technology compared to the standard string approach. The key factor is an increased current extraction due to lateral current flows. Especially under minor shading, the matrix technology benefits from an increased fill factor as well. Under diagonal shading, we find the probability of parts of the matrix module being bypassed to be reduced by 40 % in comparison to the string module. In consequence, the overall risk of hotspot occurrence in matrix modules is decreased significantly.
The investigation of novel cell-to-cell interconnection methods has gained importance with the increase of wafer sizes. Shingling (i.e., overlapping) of solar cells is not only a solution for the interconnection of smaller solar cells but also a chance to increase the output power density by (i) increasing the active cell area within the module, (ii) decreasing shading losses, and (iii) reducing electrical interconnection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.