It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.
Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer) are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs) generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG) preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG) neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250), whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000) was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three stimulus frequencies.
To elucidate the mechanisms of antinociception mediated by the descending noradrenergic pathway in the spinal cord, the effects of noradrenaline (NA) on noxious synaptic responses of substantia gelatinosa (SG) neurones, and postsynaptic actions of NA were investigated in rats using an in vivo whole-cell patch-clamp technique. Under urethane anaesthesia, the rat was fixed in a stereotaxic apparatus after the lumbar spinal cord was exposed. In the currentclamp mode, pinch stimuli applied to the ipsilateral hindlimb elicited a barrage of EPSPs, some of which initiated an action potential. Perfusion with NA onto the surface of the spinal cord hyperpolarized the membrane (5.0-9.5 mV) and suppressed the action potentials. In the voltageclamp mode (V H , −70 mV), the application of NA produced an outward current that was blocked by Cs + and GDP-β-S added to the pipette solution and reduced the amplitude of EPSCs evoked by noxious stimuli. Under the blockade of postsynaptic actions of NA, a reduction of the evoked and spontaneous EPSCs of SG neurones was still observed, thus suggesting both pre-and postsynaptic actions of NA. The NA-induced outward currents showed a clear dose dependency (EC 50 , 20 µM), and the reversal potential was −88 mV. The outward current was mimicked by an α 2 -adrenoceptor agonist, clonidine, and suppressed by an α 2 -adrenoceptor antagonist, yohimbine, but not by α 1 -and β-antagonists. These findings suggest that NA acts on presynaptic sites to reduce noxious stimuli-induced EPSCs, and on postsynaptic SG neurones to induce an outward current by G-protein-mediated activation of K + channels through α 2 -adrenoceptors, thereby producing an antinociceptive effect.
Stimulation of the rostral ventromedial medulla (RVM) is believed to exert analgesic effects through the activation of the serotonergic system descending to the spinal dorsal horn; however, how nociceptive transmission is modulated by the descending system has not been fully clarified. To investigate the inhibitory mechanisms affected by the RVM, an in vivo patch-clamp technique was used to record IPSCs from the substantia gelatinosa (SG) of the spinal cord evoked by chemical (glutamate injection) and electrical stimulation (ES) of the RVM in adult rats. In the voltage-clamp mode, the RVM glutamate injection and RVM-ES produced an increase in both the frequency and amplitude of IPSCs in SG neurons that was not blocked by glutamate receptor antagonists. Serotonin receptor antagonists were unexpectedly without effect, but a GABA A receptor antagonist, bicuculline, or a glycine receptor antagonist, strychnine, completely suppressed the RVM stimulation-induced increase in IPSCs. The RVM-ES-evoked IPSCs showed fixed latency and no failure at 20 Hz stimuli with a conduction velocity of Ͼ3 m/s (3.1-20.7 m/s), suggesting descending monosynaptic GABAergic and/or glycinergic inputs from the RVM to the SG through myelinated fibers. In the current-clamp mode, action potentials elicited by noxious mechanical stimuli applied to the receptive field of the ipsilateral hindlimb were suppressed by the RVM-ES in more than half of the neurons tested (63%; 10 of 16). These findings suggest that the RVM-mediated antinociceptive effects on noxious inputs to the SG may be exerted preferentially by the direct GABAergic and glycinergic pathways to the SG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.