Optical properties of wurtzite ZnO bulk single crystals in which an arbitrary number (typically 109–1010 cm−2) of fresh dislocations were introduced intentionally by the plastic deformation at elevated temperatures (923–1073 K) were examined. Deformed specimens showed excitonic light emission with photon energies of 3.100 and 3.345 eV, as well as their LO phonon replicas at 11 K. The light intensities increased with increasing dislocation density. The activation energy for a thermal quenching of the 3.100 or 3.345 eV emission band, which corresponds to the depth of the localized energy level associated with the emission band, was estimated to be 0.3±0.1 or 0.05±0.01 eV, respectively. The origin of the energy levels was proposed as point defect complexes involving dislocations. The introduction of the dislocations at the elevated temperatures above 923 K did not influence the intensities of the emission bands except the dislocation-related emission bands.
A novel flower-shaped Bi 2 O 3 superstructure has been successfully synthesized by calcination of the precursor, which was prepared via a citric acid assisted hydrothermal process. The precursor and Bi 2 O 3 were characterized with respect to morphology, crystal structure and elemental chemical state by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was shown that both the precursor and Bi 2 O 3 flower-shaped superstructure were constructed of numerous nanosheets while the nanosheets consisted of a great deal of nanoparticles.Furthermore, key factors for the formation of the superstructures have been proposed; a mechanism for the growth of the superstructure has been presented based on the FESEM investigation of different growth stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.