A serious disease of amphibians caused by the chytrid fungus Batrachochytrium dendrobatidis was first found in Japan in December 2006 in imported pet frogs. This was the first report of chytridiomycosis in Asia. To assess the risk of pandemic chytridiomycosis to Japanese frogs, we surveyed the distribution of the fungus among captive and wild frog populations. We established a nested PCR assay that uses two pairs of PCR primers to amplify the internal transcribed spacer (ITS) region of a ribosomal RNA cassette to detect mild fungal infections from as little as 0.001 pg (1 fg) of B. dendrobatidis DNA. We collected swab samples from 265 amphibians sold at pet shops, 294 bred at institutes and 2103 collected at field sites from northern to southwestern Japan. We detected infections in native and exotic species, both in captivity and in the field. Sequencing of PCR products revealed 26 haplotypes of the B. dendrobatidis ITS region. Phylogenetic analysis showed that three of these haplotypes were specific to the Japanese giant salamander (Andrias japonicus) and appeared to have established a commensal relationship with this native amphibian. Many other haplotypes were carried by alien amphibians. The highest genetic diversity of B. dendrobatidis was found in the American bullfrog (Rana catesbeiana). Some strains of B. dendrobatidis appeared to be endemic to Japanese native amphibians, but many alien strains are being introduced into Japan via imported amphibians. To improve chytridiomycosis risk management, we must consider the risk of B. dendrobatidis changing hosts as a result of anthropogenic disturbance of the host-specific distribution of the fungus.
The first extensively drug resistant (XDR) Neisseria gonorrhoeae strain with high resistance to the extended-spectrum cephalosporin ceftriaxone was identified in 2009 in Japan, but no other strain with this antimicrobial-resistance profile has been reported since. However, surveillance to date has been based on phenotypic methods and sequence typing, not genome sequencing. Therefore, little is known about the local population structure at the genomic level, and how resistance determinants and lineages are distributed and evolve. We analysed the whole-genome sequence data and the antimicrobial-susceptibility testing results of 204 strains sampled in a region where the first XDR ceftriaxone-resistant N. gonorrhoeae was isolated, complemented with 67 additional genomes from other time frames and locations within Japan. Strains resistant to ceftriaxone were not found, but we discovered a sequence type (ST)7363 sub-lineage susceptible to ceftriaxone and cefixime in which the mosaic penA allele responsible for reduced susceptibility had reverted to a susceptible allele by recombination. Approximately 85 % of isolates showed resistance to fluoroquinolones (ciprofloxacin) explained by linked amino acid substitutions at positions 91 and 95 of GyrA with 99 % sensitivity and 100 % specificity. Approximately 10 % showed resistance to macrolides (azithromycin), for which genetic determinants are less clear. Furthermore, we revealed different evolutionary paths of the two major lineages: single acquisition of penA X in the ST7363-associated lineage, followed by multiple independent acquisitions of the penA X and XXXIV in the ST1901-associated lineage. Our study provides a detailed picture of the distribution of resistance determinants and disentangles the evolution of the two major lineages spreading worldwide.
In Neisseria gonorrhoeae, the mosaic type of penA, which encodes penicillin-binding protein 2 (PBP 2), is associated with reduced susceptibility to oral cephalosporins. To investigate the relatedness of N. gonorrhoeae clinical isolates with reduced susceptibility, we sequenced the penA genes of 32 isolates. Five different amino acid sequence types of PBP 2 were identified, but all seemed to be derivatives of pattern X of PBP 2 (PBP 2-X). However, multilocus sequence typing of the isolates showed that the isolates belonged to six different sequence types. As PBP 2-X was identified in three different sequence types, horizontal transfer of the penA allele encoding PBP2-X was suggested. We demonstrated that the penA gene could be transferred from an isolate with reduced susceptibility to a sensitive isolate by natural transformation. Comparison of the sequence of the penA-flanking regions of 12 transformants with those of the donor and the recipient suggested that at least a 4-kb DNA segment, including the penA gene, was transferred. During horizontal transfer, some of the penA alleles also acquired variations due to point mutations and genetic exchange within the allele. Our results provide evidence that the capacity for natural transformation in N. gonorrhoeae plays a role in the spread of chromosomal antibiotic resistance genes and the generation of diversity in such genes.
ABSTRACT. From November 2000 to July 2002, 112 fecal samples from pet reptiles, including 18 turtles, 71 lizards and 23 snakes, sold at a pet shop were examined for the prevalence of Salmonella spp. in Japan. Salmonella spp. were isolated from 83 (74.1%) of 112 samples, and a total of 112 Salmonella isolates were identified as subspecies I to IV. The majority of isolates (62.5%) belonged to subspecies I and 54 isolates could be identified as any of 28 serovars. The predominant serovars were found to be S. Bardo, S. Newport and S. Panama, which cause human salmonellosis. These results indicate that pet reptiles may be a potential infectious source of human salmonellosis in Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.