The condensing effect of cholesterol on fluid bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine has been compared with that of dihydrocholesterol and coprostanol by means of nearest-neighbor recognition measurements. Whereas dihydrocholesterol exhibits a condensing power that is equivalent to that of cholesterol, the action of coprostanol is significantly weaker. These results provide strong support for a template mechanism of condensation and argue against an umbrella mechanism.
A quantitative assessment has been made of the interaction between exchangeable mimics of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol in the liquid-ordered (l0) and the liquid-disordered (ld) states using the nearest-neighbor recognition (NNR) method. This assessment has established that these lipids mix ideally in the l0 phase (i.e., they show no net attraction or repulsion toward each other) but exhibit repulsive interactions in the ld phase. The implications of these findings for the interactions between unsaturated phospholipids and cholesterol in eukaryotic cell membranes are briefly discussed.
Nearest-neighbor recognition (NNR) measurements have been made for two lipidated forms of GlyCys, interacting with analogues of cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the liquid-ordered (lo) and liquid-disordered (ld) phases. Interaction free energies that have been determined from these measurements have been used in Monte Carlo simulations to quantify the distribution of the peptides between liquid-ordered and liquid-disordered regions. These simulations have shown that significant differences in the lipid chains have a very weak influence on the partitioning of the peptide between these two phases. They have also revealed an insensitivity of the peptide partition coefficient, Kp, to the size of the lo and ld domains that are present. In a broader context, these findings strongly suggest that the sorting of peripheral proteins in cellular membranes via differential lipidation may be more subtle than previously thought.
PEGylated phospholipids are commonly used to increase the blood-circulation time of liposomes by providing a steric barrier around them. This paper documents a fundamentally new property of these lipids-an ability to stimulate the release of cholesterol from phospholipid membranes. Evidence for such stimulation has been obtained by measuring the transport of dehydroergosterol (DHE), a fluorescent simulant of cholesterol, from donor liposomes made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG(2000)), and DHE to acceptor liposomes made from POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), and cholesterol. The potential of PEGylated lipids to serve as novel cholesterol-lowering agents is briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.