Agroforestry systems (AFS) and practices followed in India are highly diverse due to varied climatic conditions ranging from temperate to humid tropics. The estimated area under AFS in India is 13.75 million ha with the highest concentration being in the states of Uttar Pradesh (1.86 million ha), followed by Maharashtra (1.61 million ha), Rajasthan (1.55 million ha) and Andhra Pradesh (1.17 million ha). There are many forms of agroforestry practice in India ranging from intensified simple systems of monoculture, such as block plantations and boundary planting, to far more diverse and complex systems, such as home gardens. As a result, the biomass production and carbon sequestration potential of AFS are highly variable across different agro-climatic zones of India. Studies pertaining to the assessment of biomass and carbon storage in different agroforestry systems in the Indian sub-continent are scanty and most of these studies have reported region and system specific carbon stocks. However, while biomass and carbon stock data from different AFS at national scale has been scanty hitherto, such information is essential for national accounting, reporting of C sinks and sources, as well as for realizing the benefits of carbon credit to farmers engaged in tree-based production activities. Therefore, the objective of this study was to collate and synthesize the existing information on biomass carbon and SOC stocks associated with agroforestry practices across agro-climatic zones of India. The results revealed considerable variation in biomass and carbon stocks among AFS, as well as between different agro-climatic zones. Higher total biomass (>200 Mg ha−1) was observed in the humid tropics of India which are prevalent in southern and northeastern regions, while lower total biomass (<50 Mg ha−1) was reported from Indo-Gangetic, western and central India. Total biomass carbon varied in the range of 1.84 to 131 Mg ha−1 in the agrihorticulture systems of western and central India and the coffee agroforests of southern peninsular India. Similarly, soil organic carbon (SOC) ranged between 12.26–170.43 Mg ha−1, with the highest SOC in the coffee agroforests of southern India and the lowest in the agrisilviculture systems of western India. The AFS which recorded relatively higher SOC included plantation crop-based practices of southern, eastern and northeastern India, followed by the agrihorticulture and agrisilviculture systems of the northern Himalayas. The meta-analysis indicated that the growth and nature of different agroforestry tree species is the key factor affecting the carbon storage capacity of an agroforestry system. The baseline data obtained across various regions could be useful for devising policies on carbon trading or financing for agroforestry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.