High-resolution simulations are conducted with the Weather Research and Forecasting Model to evaluate the sensitivity of wake effects and power production from two wind farm parameterizations [the commonly used Fitch scheme and the more recently developed Explicit Wake Parameterization (EWP)] to the resolution at which the model is applied. The simulations are conducted for a 9-month period for a domain encompassing much of the U.S. Midwest. The two horizontal resolutions considered are 4 km × 4 km and 2 km × 2 km grid cells, and the two vertical discretizations employ either 41 or 57 vertical layers (with the latter having double the number in the lowest 1 km). Higher wind speeds are observed close to the wind turbine hub height when a larger number of vertical layers are employed (12 in the lowest 200 m vs 6), which contributes to higher power production from both wind farm schemes. Differences in gross capacity factors for wind turbine power production from the two wind farm parameterizations and with resolution are most strongly manifest under stable conditions (i.e., at night). The spatial extent of wind farm wakes when defined as the area affected by velocity deficits near to wind turbine hub heights in excess of 2% of the simulation without wind turbines is considerably larger in simulations with the Fitch scheme. This spatial extent is generally reduced by increasing the horizontal resolution and/or increasing the number of vertical levels. These results have important applications to projections of expected annual energy production from new wind turbine arrays constructed in the wind shadow from existing wind farms.
The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.
Abstract. The interannual variability (IAV) of expected annual energy production (AEP) from proposed wind farms plays a key role in dictating project financing. IAV in preconstruction projected AEP and the difference in 50th and 90th percentile (P50 and P90) AEP derive in part from variability in wind climates. However, the magnitude of IAV in wind speeds at or close to wind turbine hub heights is poorly defined and may be overestimated by assuming annual mean wind speeds are Gaussian distributed with a standard deviation (σ) of 6 %, as is widely applied within the wind energy industry. There is a need for improved understanding of the long-term wind resource and the IAV therein in order to generate more robust predictions of the financial value of a wind energy project. Long-term simulations of wind speeds near typical wind turbine hub heights over the eastern USA indicate median gross capacity factors (computed using 10 min wind speeds close to wind turbine hub heights and the power curve of the most common wind turbine deployed in the region) that are in good agreement with values derived from operational wind farms. The IAV of annual mean wind speeds at or near typical wind turbine hub heights in these simulations and AEP computed using the power curve of the most commonly deployed wind turbine is lower than is implied by assuming σ=6 %. Indeed, rather than 9 out of 10 years exhibiting AEP within 0.9 and 1.1 times the long-term mean AEP as implied by assuming a Gaussian distribution with σ of 6 %, the results presented herein indicate that in over 90 % of the area in the eastern USA that currently has operating wind turbines, simulated AEP lies within 0.94 and 1.06 of the long-term average. Further, the IAV of estimated AEP is not substantially larger than IAV in mean wind speeds. These results indicate it may be appropriate to reduce the IAV applied to preconstruction AEP estimates to account for variability in wind climates, which would decrease the cost of capital for wind farm developments.
Paired simulations are conducted using the Weather Research and Forecasting model applied at convection permitting resolution in order to determine the impact of wind turbines (WTs) on the local to mesoscale climate. Using actual WT locations and a model of the effect of the WT rotor on the flow field, it is shown that while the presence of WT changes wind speeds (WSs) and near‐surface air temperature in 4‐km grid cells in which WTs are located, the impact at larger scales on near‐surface air temperature, specific humidity, the fluxes of latent and sensible heat, boundary layer heights, and precipitation is not significant in any season other than summer. During summer, the maximum pairwise difference in grid cell mean temperatures is 0.5 K and the maximum increase in near‐surface specific humidity is 0.4 g/kg. However, a spatial average of the mean seasonal perturbation of air temperature by WT gives a net impact of <0.1 K. Precipitation probability is also not significantly impacted in any season other than summer. In the summer the presence of WT is associated with a small decrease in precipitation probability and a decrease in season total precipitation of −2.6%. The finding of minor magnitude, but significant impacts, during summer should be used to contextualize results of substantial climate impacts from WT arrays deployed in the U.S. Central Plains based on short‐term simulations conducted for the summer season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.