Lipid absorption and metabolism are regulated by feeding and by the circadian system. It has been suggested that the expression of enzymes involved in lipid metabolism is directly controlled by the clock system. This study was designed to examine whether or not the CLOCK/BMAL1 heterodimer has transcriptional activity for genes via the peroxisome proliferator-activated receptor response element (PPRE).
Intestinal alkaline phosphatase (IAP) is involved in the process of fat absorption, a conclusion confirmed by an altered lipid transport and a faster body weight gain from 10 to 30 wk in both male and female mice with a homozygous null mutation of the IAP coding gene ( Akp3−/− mice). This study was aimed to delineate morphologically and quantitatively the accelerated lipid absorption in male Akp3−/− mice. Feeding a corn oil bolus produced an earlier peak of triacylglycerol in serum (2 vs. 4 h for Akp3−/− and wild-type mice, respectively) and an approximately twofold increase in serum triacylglycerol concentration in Akp3−/− mice injected with a lipolysis inhibitor, Triton WR-1339. A corn oil load induced the threefold enlargement of the Golgi vacuoles in male wild-type mice but not in Akp3−/− mice, indicating that absorbed lipids rarely reached the Golgi complex and that the transcytosis of lipid droplets does not follow the normal pathway in male Akp3−/− mice. Force feeding an exaggerated fat intake by a 30% fat chow for 10 wk induced obesity in both male Akp3−/− and wild-type mice, and therefore no phenotypic difference was observed between the two. On the other hand, the forced high-fat chow induced an 18% greater body weight gain, hepatic steatosis, and visceral fat accumulation in female Akp3−/− mice but not in female wild-type controls. These results provide further evidence that IAP is involved in the regulation of the lipid absorption process and that its absence leads to progressive metabolic abnormalities in certain fat-forced conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.