This study proposes a fault diagnosis method (FD) for multistage centrifugal pumps (MCP) using informative ratio principal component analysis (Ir-PCA). To overcome the interference and background noise in the vibration signatures (VS) of the centrifugal pump, the fault diagnosis method selects the fault-specific frequency band (FSFB) in the first step. Statistical features in time, frequency, and wavelet domains were extracted from the fault-specific frequency band. In the second step, all of the extracted features were combined into a single feature vector called a multi-domain feature pool (MDFP). The multi-domain feature pool results in a larger dimension; furthermore, not all of the features are best for representing the centrifugal pump condition and can affect the condition classification accuracy of the classifier. To obtain discriminant features with low dimensions, this paper introduces a novel informative ratio principal component analysis in the third step. The technique first assesses the feature informativeness towards the fault by calculating the informative ratio between the feature within the class scatteredness and between-class distance. To obtain a discriminant set of features with reduced dimensions, principal component analysis was applied to the features with a high informative ratio. The combination of informative ratio-based feature assessment and principal component analysis forms the novel informative ratio principal component analysis. The new set of discriminant features obtained from the novel technique are then provided to the K-nearest neighbor (K-NN) condition classifier for multistage centrifugal pump condition classification. The proposed method outperformed existing state-of-the-art methods in terms of fault classification accuracy.
Remaining useful life (RUL) prognosis is one of the most important techniques in concrete structure health management. This technique evaluates the concrete structure strength through determining the advent of failure, which is very helpful to reduce maintenance costs and extend structure life. Degradation information with the capability of reflecting structure health can be considered as a principal factor to achieve better prognosis performance. In traditional data-driven RUL prognosis, there are drawbacks in which features are manually extracted and threshold is defined to mark the specimen’s breakdown. To overcome these limitations, this paper presents an innovative SAE-DNN structure capable of automatic health indicator (HI) construction from raw signals. HI curves constructed by SAE-DNN have much better fitness metrics than HI curves constructed from statistical parameters such as RMS, Kurtosis, Sknewness, etc. In the next stage, HI curves constructed from training degradation data are then used to train a long short-term memory recurrent neural network (LSTM-RNN). The LSTM-RNN is utilized as a RUL predictor since its special gates allow it to learn long-term dependencies even when the training data is limited. Model construction, verification, and comparison are performed on experimental reinforced concrete (RC) beam data. Experimental results indicates that LSTM-RNN generally estimates more accurate RULs of concrete beams than GRU-RNN and simple RNN with the average prediction error cycles was less than half compared to those of the simple RNN.
In this study, a scheme of remaining useful lifetime (RUL) prognosis from raw acoustic emission (AE) data is presented to predict the concrete structure’s failure before its occurrence, thus possibly prolong its service life and minimizing the risk of accidental damage. The deterioration process is portrayed by the health indicator (HI), which is automatically constructed from raw AE data with a deep neural network pretrained and fine-tuned by a stacked autoencoder deep neural network (SAE-DNN). For the deep neural network structure to perform a more accurate construction of health indicator lines, a hit removal process with a one-class support vector machine (OC-SVM), which has not been investigated in previous studies, is proposed to extract only the hits which matter the most to the portrait of deterioration. The new set of hits is then harnessed as the training labels for the deep neural network. After the completion of the health indicator line construction, health indicators are forwarded to a long short-term memory recurrent neural network (LSTM-RNN) for the training and validation of the remaining useful life prediction, as this structure is capable of capturing the long-term dependencies, even with a limited set of data. Our prediction result shows a significant improvement in comparison with a similar scheme but without the hit removal process and other methods, such as the gated recurrent unit recurrent neural network (GRU-RNN) and the simple recurrent neural network.
Conventional Distorted Born Iterative Method (DBIM) using single frequency has low resolution and is prone to creating images with high-contrast subjects. We propose a productive frequency combination method to better result in tomographic ultrasound imaging based on the multi-frequency technique. This study uses the natural mechanism of emitting oscillators' frequencies and uses these frequencies for imaging in iterations. We use a fundamental tone (i.e., the starting frequency f0) for the first iteration in DBIM, then consecutively use its overtones for the next ones. The digital simulation scenarios are tested with other multi-frequency approaches to prove our method's feasibility. We performed 57 different simulation scenarios on the use of multi-frequency information for the DBIM method. As a result, the proposed method for the smallest normalization error (RRE = 0.757). The proposed method's imaging time is not significantly longer than the way of using single frequency information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.