We show that the Modified Newtonian Dynamics (MOND) regime can be fully recovered as the weak-field limit of a particular theory of gravity formulated in the metric approach. This is possible when Milgrom's acceleration constant is taken as a fundamental quantity which couples to the theory in a very consistent manner. As a consequence, the scale invariance of the gravitational interaction is naturally broken. In this sense, Newtonian gravity is the weak-field limit of general relativity and MOND is the weak-field limit of that particular extended theory of gravity. We also prove that a Noether's symmetry approach to the problem yields a conserved quantity coherent with this relativistic MONDian extension.
In the pursuit of a general formulation for a modified gravitational theory at the non-relativistic level and as an alternative to the dark matter hypothesis, we construct a model valid over a wide variety of astrophysical scales. Through the inclusion of Milgrom's acceleration constant into a gravitational theory, we show that very general formulae can be constructed for the acceleration felt by a particle. Dimensional analysis shows that this inclusion naturally leads to the appearance of a mass-length scale in gravity, breaking its scale invariance. A particular form of the modified gravitational force is constructed and tested for consistency with observations over a wide range of astrophysical environments, from Solar system to extragalactic scales. We show that over any limited range of physical parameters, which define a specific class of astrophysical objects, the dispersion velocity of a system must be a power law of its mass and size. These powers appear linked together through a natural constraint relation of the theory. This yields a generalized gravitational equilibrium relation valid for all astrophysical systems. A general scheme for treating spherical symmetrical density distributions is presented, which in particular shows that the Fundamental Plane of elliptical galaxies, the Newtonian virial equilibrium, the Tully-Fisher and the Faber-Jackson relations, as well as the scalings observed in local dwarf spheroidal galaxies, are nothing but particular cases of that relation when applied to the appropriate mass-length scales. We discuss the implications of this approach for a modified theory of gravity and emphasize the advantages of working with the force, instead of altering Newton's second law of motion, in the formulation of a gravitational theory.
In this article we perform a second order perturbation analysis of the gravitational metric theory of gravity f (χ) = χ 3/2 developed by . We show that the theory accounts in detail for two observational facts: (1) the phenomenology of flattened rotation curves associated to the Tully-Fisher relation observed in spiral galaxies, and (2) the details of observations of gravitational lensing in galaxies and groups of galaxies, without the need of any dark matter. We show how all dynamical observations on flat rotation curves and gravitational lensing can be synthesised in terms of the empirically required metric coefficients of any metric theory of gravity. We construct the corresponding metric components for the theory presented at second order in perturbation, which are shown to be perfectly compatible with the empirically derived ones. It is also shown that under the theory being presented, in order to obtain a complete full agreement with the observational results, a specific signature of Riemann's tensor has to be chosen. This signature corresponds to the one most widely used nowadays in relativity theory. Also, a computational program, the MEXICAS (Metric EXtended-gravity Incorporated through a Computer Algebraic System) code, developed for its usage in the Computer Algebraic System (CAS) Maxima for working out perturbations on a metric theory of gravity, is presented and made publicly available.
Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales, however it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate or ultra-light axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core halos, it has a natural cut-off in its matter power spectrum and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) The soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for a SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 < m ψ /(10 −23 eV/c 2 ) < 27.0 and for the core radius 0.326 < r c /kpc < 8.96. From the combined analysis with the LSB galaxies, we obtained m ψ = 0.554 × 10 −23 eV, a result in tension with the severe cosmological constraints. Also, we show the analytical mSFDM model fits the observations as well as or better than the empirical soliton+NFW profile, and it reproduces naturally the wiggles present in some galaxies, being a theoretically motivated framework additional or alternative to the FDM profile.
We use a specific form of the interpolation function in the MOND formalism, which optimally accounts for the internal structure of dwarf spheroidal (dSph) galaxies, to explore the consequences it has on the scaling relations seen in these systems. The particular form of the interpolation function we used leads to a law of gravity that does not degrade the good fit of the MOND proposal on galactic scales, and in fact, slightly improves the accordance with observations on dSph scales. This formalism yields a good description of gravitational phenomena without the need of invoking any still undetected and hypothetically dominant dark matter, in the weak field regime probed by local dSph galaxies. Isothermal equilibrium density profiles then yield projected surface density profiles for the local dSph galaxies in very good agreement with observational determinations, for values of the relevant parameters as inferred from recent observations of these Galactic satellites. The observed scaling relations for these systems are also naturally accounted for within the proposed scheme, including a previously unrecognised correlation of the inferred mass-to-light ratios of local dSph's with the ages of their stellar populations, which is natural in modified gravity schemes in the absence of dark matter. The results shed some light on the form that the MOND interpolating function may have in the most challenging regime, which occurs at moderate accelerations and intermediate mass-weighted lengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.