Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
Summary Hypersensitivity reactions to drugs are often unpredictable and can be life threatening, underscoring a need for understanding their underlying mechanisms and risk factors. The extent to which germline genetic variation influences the risk of commonly reported drug allergies such as penicillin allergy remains largely unknown. We extracted data from the electronic health records of more than 600,000 participants from the UK, Estonian, and Vanderbilt University Medical Center’s BioVU biobanks to study the role of genetic variation in the occurrence of self-reported penicillin hypersensitivity reactions. We used imputed SNP to HLA typing data from these cohorts to further fine map the human leukocyte antigen (HLA) association and replicated our results in 23andMe’s research cohort involving a total of 1.12 million individuals. Genome-wide meta-analysis of penicillin allergy revealed two loci, including one located in the HLA region on chromosome 6. This signal was further fine-mapped to the HLA-B ∗ 55:01 allele (OR 1.41 95% CI 1.33–1.49, p value 2.04 × 10 −31 ) and confirmed by independent replication in 23andMe’s research cohort (OR 1.30 95% CI 1.25–1.34, p value 1.00 × 10 −47 ). The lead SNP was also associated with lower lymphocyte counts and in silico follow-up suggests a potential effect on T-lymphocytes at HLA-B ∗ 55:01. We also observed a significant hit in PTPN22 and the GWAS results correlated with the genetics of rheumatoid arthritis and psoriasis. We present robust evidence for the role of an allele of the major histocompatibility complex (MHC) I gene HLA-B in the occurrence of penicillin allergy.
Interindividual variability in drug response constitutes a major concern in pharmacotherapy. While polymorphisms in genes involved in drug disposition have been extensively studied, drug target variability remains underappreciated. By mapping the genomic variability of all human drug target genes onto high-resolution crystal structures of drug target complexes, we identified 1094 variants localized within 6 Å of drug-binding pockets and directly affecting their geometry, topology, or physicochemical properties. We experimentally show that binding site variants affect pharmacodynamics with marked drug-and variant-specific differences. In addition, we demonstrate that a common BCHE variant confers resistance to tacrine and rivastigmine, which can be overcome by the use of derivatives based on squaric acid scaffolds or tryptophan conjugation. These findings underscore the importance of genetic drug target variability and demonstrate that integration of genomic data and structural information can inform personalized drug selection and genetically guided drug development to overcome resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.