SummaryThe probiotic Escherichia coli strain Nissle 1917 (EcN) has been used for decades in human medicine in Central Europe for the treatment and prevention of intestinal disorders and diseases. However, the molecular mechanisms underlying its beneficial effects are only partially understood. To identify molecular responses induced by EcN that might contribute to its probiotic properties polarized T84 cells were investigated employing DNA microarrays, quantitative RT-PCR, Western blotting, immunofluorescence and specific protein kinase C (PKC) inhibitors. Polarized T84 epithelial cell monolayers were used as a model to monitor barrier disruption by infection with the enteropathogenic E. coli (EPEC) strain E2348/69. Co-incubation of EPEC with EcN or addition of EcN following EPEC infection abolished barrier disruption and, moreover, restored barrier integrity as monitored by transepithelial resistance. DNA-microarray analysis of T84 cells incubated with EcN identified 300+ genes exhibiting altered expression. EcN altered the expression, distribution of zonula occludens-2 (ZO-2) protein and of distinct PKC isotypes. ZO-2 expression was enhanced in parallel to its redistribution towards the cell boundaries. This study provides evidence that EcN induces an overriding signalling effect leading to restoration of a disrupted epithelial barrier. This is transmitted via silencing of PKCz and the redistribution of ZO-2. We suggest that these properties contribute to the reported efficacy in the treatment of inflammatory bowel diseases and in part rationalize the probiotic nature of EcN.
Among the gram-negative microorganisms with probiotic properties, Escherichia coli strain Nissle 1917 (briefly EcN) is probably the most intensively investigated bacterial strain today. Since nearly 100 years, the EcN strain is used as the active pharmaceutical ingredient in a licensed medicinal product that is distributed in Germany and several other countries. Over the last few decades, novel probiotic activities have been detected, which taken together are specific of this versatile E. coli strain. This review gives a short overview on the discovery and history of the EcN strain.
The probiotic Escherichia coli strain Nissle 1917 (Mutaflor) of serotype O6:K5:H1 was reported to protect gnotobiotic piglets from infection with Salmonella enterica serovar Typhimurium. An important virulence property of Salmonella is invasion of host epithelial cells. Therefore, we tested for interference of E. coli strain Nissle 1917 with Salmonella invasion of INT407 cells. Simultaneous administration of E. coli strain Nissle 1917 and Salmonella resulted in up to 70% reduction of Salmonella invasion efficiency. Furthermore, invasion of Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and even of Listeria monocytogenes were inhibited by the probiotic E. coli strain Nissle 1917 without affecting the viability of the invasive bacteria. The observed inhibition of invasion was not due to the production of microcins by the Nissle 1917 strain because its isogenic microcin-negative mutant SK22D was as effective as the parent strain. Reduced invasion rates were also achieved if strain Nissle 1917 was separated from the invasive bacteria as well as from the INT407 monolayer by a membrane non-permeable for bacteria. We conclude E. coli Nissle 1917 to interfere with bacterial invasion of INT407 cells via a secreted component and not relying on direct physical contact with either the invasive bacteria or the epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.