In the present theoretical investigation, the effect of ferrofluid on the dynamic characteristics of curved slider bearings is presented using Shliomis model which accounts for the rotation of magnetic particles, their magnetic moments, and the volume concentration in the fluid. The modified Reynolds equation for the dynamic state of the bearing is obtained. The results of dynamic stiffness and damping characteristics are presented. It is observed that the effect of rotation of magnetic particles improves the stiffness and damping capacities of the bearings.
The present theoretical analysis investigates the simultaneous effect of lubricant inertia and non-Newtonian pseudoplastic lubricant (lubricant blended with viscosity index improver and viscosity thickener)–Rabinowitsch fluid model on the performance of externally pressurized annular hydrostatic thrust bearings. A close form solution is obtained for pressure distribution. The effect of centrifugal inertia on the pressure distribution in the recess region is considered by taking non-constant recess pressure under a hydrodynamic condition. The load capacity and flow rate have been numerically calculated for various values of viscosity index improver together with the centrifugal inertia effects. In the limiting case in which there is an absence of pseudoplasticity, the results are compared with the pre-established Newtonian lubricants and are found to be in good agreement.
With the development of medical science, non-Newtonian fluids have taken on added significance with a variety of applications in real life. The flow of non-Newtonian fluids in tubes and pipes plays a vital role in daily life. The examples of such applications are medical instruments, human body, machines, etc. The study of such mechanisms with the Newtonian fluids has not been found satisfactory due to nonlinear behavior of stress strain relationship. In the present analysis, the study of peristaltic flow in a tube has been carried out taking into account the non-Newtonian fluid : Rabinowitsch fluid model.Considering the significant terms in Navier-Stokes equations, solutions have been derived for fluid flow in axial direction in terms of pressure gradient. Using the continuity of flow, and exact solution has been derived for fluid pressure at wall. To establish the applicability of the solution, results for pressure rise at wall, pressure gradient and streamlines have been presented graphically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.