BackgroundAs successful malaria control programmes re-orientate towards elimination, the identification of transmission foci, targeting of attack measures to high-risk areas and management of importation risk become high priorities. When resources are limited and transmission is varying seasonally, approaches that can rapidly prioritize areas for surveillance and control can be valuable, and the most appropriate attack measure for a particular location is likely to differ depending on whether it exports or imports malaria infections.Methods/ResultsHere, using the example of Namibia, a method for targeting of interventions using surveillance data, satellite imagery, and mobile phone call records to support elimination planning is described. One year of aggregated movement patterns for over a million people across Namibia are analyzed, and linked with case-based risk maps built on satellite imagery. By combining case-data and movement, the way human population movements connect transmission risk areas is demonstrated. Communities that were strongly connected by relatively higher levels of movement were then identified, and net export and import of travellers and infection risks by region were quantified. These maps can aid the design of targeted interventions to maximally reduce the number of cases exported to other regions while employing appropriate interventions to manage risk in places that import them.ConclusionsThe approaches presented can be rapidly updated and used to identify where active surveillance for both local and imported cases should be increased, which regions would benefit from coordinating efforts, and how spatially progressive elimination plans can be designed. With improvements in surveillance systems linked to improved diagnosis of malaria, detailed satellite imagery being readily available and mobile phone usage data continually being collected by network providers, the potential exists to make operational use of such valuable, complimentary and contemporary datasets on an ongoing basis in infectious disease control and elimination.
Many interactions between network users rely on trust, which is becoming particularly important given the security breaches in the Internet today. These problems are further exacerbated by the dynamics in wireless mobile networks. In this paper, we address the issue of trust advisory and its establishment in mobile networks, with application to ad hoc networks, including delay tolerant (DTNs). We utilize encounters in mobile societies in novel ways, noticing that mobility provides opportunities to build proximity, location, and similarity based trust. Four new trust advisor filters are introduced -including encounter frequency, duration, behavior vectors, and behavior matrices. The filters are evaluated over an extensive set of real-world traces collected from a major university. Two sets of statistical analyses are performed; the first examines the underlying encounter relationships in mobile societies, and the second evaluates DTN routing in mobile peer-to-peer networks using trust and selfishness models. We find that for the analyzed trace, trust filters are stable in terms of growth with time (three filters have close to 90% overlap of users over a period of 9 weeks) and the results produced by different filters are noticeably different. In our analysis for trust and selfishness model, our trust filters largely undo the effect of selfishness on the unreachability in a network. Thus improving the connectivity in a network with selfish nodes. We hope that our initial promising results open the door for further research on proximity-based trust.infrastructure-less peer-to-peer mobile networks, such as ad hoc, delay tolerant (DTNs) or sensor networks, cooperation, and subsequently trust is imperative to the construction and operation of the network. Selfish and uncooperative nodes can easily disrupt communication. With trust, several potential applications can be enabled including mobile social networking, building groups and communities of interest, localized alert and emergency notification, context-aware and similaritybased networking [1], to name a few.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.