Holy basil ( Ocimum sanctum Linn) or known also as “kemangi” in Indonesia is a plant commonly used as a herb in Asian countries. It is also medicinal with antipyretic, anti-inflammatory, anti-cancer, and neuroprotective properties. This dataset article provides broad screening of the phytochemical component of Ocimum sanctum ethanolic extract (EEOS) as well as a secondary metabolite profile of EEOS. Analyses were done qualitatively and quantitatively using a combination of spectrophotometer, thin layer chromatography, Fourier transform infrared spectroscopy (FTIR), and 1 H-nuclear magnetic resonance ( 1 H-NMR). Results showed that Ocimum sanctum ethanolic extract contains phytochemical compounds, including flavonoids, phenols, tannins, saponins, alkaloids, steroids, and terpenoids. In addition, a secondary metabolite was found and classified into metabolite groups including alcohol, amine, carboxylic acid, alkane, alkene, aldehyde, phenol, ether, sulfur, halogen, benzene, nitrogen, sterol, amino acid, carbohydrate, and nitrogen.
Background and Aim: Ocimum sanctum (OS) is a herbal plant, which is easy to find and is widely used as an alternative medication. The previous studies have shown that several species of OS extract have therapeutic properties, and in some cases, antitumor properties. Furthermore, several data have shown the antiproliferative effects of OS extract in cases of breast cancer, human fibrosarcoma, and oral cancer. Lung adenocarcinoma is a major cause of male cancer worldwide; however, the effect of OS (of Indonesian origin) on the metastasis of human alveolar pulmonary adenocarcinoma A549 cells remains unclear. This study aimed to analyze the antiangiogenic effects of OS ethanolic extract in A549 lung adenocarcinoma cells. Materials and Methods: An angiogenesis assay was performed by seeding A549 cells on extracellular matrix solution and observing tube formation using an inverted microscope. Enzyme-linked immunosorbent assay for αvβ3, matrix metalloproteinase (MMP)-2, and MMP-9 was performed by analyzing the cell lysate after a given treatment. Results: OS ethanolic extract significantly inhibited tube formation of A549 cells and suppressed the expression of integrin αvβ3, MMP-2, and MMP-9. Conclusion: Our findings indicate that OS ethanolic extract disrupts angiogenesis of A549 cells, which may result from the disruption of cell migration and proliferation as a consequence of downregulation of αvβ3, MMP-2, and MMP-9. Taken together, OS ethanolic extract may represent a good therapeutic candidate for the treatment of metastasis in lung adenocarcinoma. Further studies are warranted to further establish the efficacy of OS in the treatment of lung adenocarcinoma.
Background and Aim: Lung cancer, especially non-small cell lung cancer (NSCLC), has been identified as the leading cause of cancer deaths worldwide. The mortality rate from lung cancer has been estimated to be 18.4%. Until now, conventional treatments have not yielded optimal results, thus necessitating an investigation into the use of traditional herbal plants as potential candidates for its treatment. This study aimed to determine the inhibitory and apoptotic activity of the ethanolic extract from Ocimum sanctum Linn. (EEOS) by in silico molecular docking and through in vitro studies using NSCLC cells (A549 cell line). Materials and Methods: Dried simplicia of Ocimum sanctum was converted into EEOS using the maceration method. Spectrophotometry was then employed to analyze the EEOS compound. The known main active compounds were further analyzed for inhibitory and apoptotic effects on gene signaling using in silico molecular docking involving the downloading of active compounds from PubChem and target proteins from the Protein Data Bank; the active compounds and proteins were then prepared using the Discovery Studio software v. 19.0.0 and the PyRX 0.8 program, interacted with the HEX 8.0.0 program, and visualized with the Discovery Studio Visualizer v. 19.0. Finally, an in vitro analysis was performed using an antiproliferative-cytotoxic test (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay in the NSCLC A549 cell line). Results: The analysis revealed that the active compounds in the ethanolic extract were dominated by quercetin (flavonoids) (47.23% b/b) and eugenol (phenolic) (12.14% b/b). These active compounds interacted with the active sites (residual amino acids) of the αvβ3 integrin, α5β1 integrin, caspase-3, caspase-9, and vascular endothelial growth factor. Hydrogen bonds and Pi-cation and Pi-alkyl interactions were involved in the relationships between the active compounds and the active sites and thus may reveal an antioxidant property of the extract. Furthermore, in vitro analysis showed the inhibitory and antiproliferative effects of the EEOS against non-small cell cancer (A549). Conclusion: Taken together, our data showed the ability of EEOS as an inhibitor and apoptotic agent for lung cancer; however, further research is needed to determine the exact mechanism of EEOS as an herbal medication.
Background: Mammary cancer, called breast cancer in humans, results from the abnormal growth of cells in the mammary glands that attack the surrounding tissue. The process of carcinogenesis at the molecular level can be monitored through the production of proteins as biomarkers for carcinogenesis. 7,12-Dimethylbenz[a]anthracene (DMBA) is a known carcinogenic compound. This study aimed to analyze the proteomic profile as critical data regarding DMBA-induced carcinogenesis in Sprague‒Dawley rats. Methods: Experimental animals were divided into two groups: a treatment group given DMBA at a dose of 10 mg/kg (intramammary) at intervals of 48 hours for a total of 10 doses, and a negative control group that was not given any treatment. Measurement of the total protein concentration was carried out using a spectrophotometer, and the data were analyzed using a t-test, while the characterization of protein profiles was carried out based on molecular weight data using SDS‒PAGE. Mammary gland histopathology was evaluated by hematoxylin and eosin (H&E) staining. Results: The results showed a significant (p<0.05) increase of 27% in the total protein concentration in the rat mammary cancer model. The results of proteomic characterization showed a protein profile containing proteins of 187, 169, 68, 64, 53, 41, 24, 18, and 14 kDa, which were suspected to be HER-2, Nischarin, COX-2, Albumine, Vimentin, ACTB, TNF, p16, and fatty acid binding protein 3 (FABP3), respectively. Histopathology of the mammary glands showed an irregular and indistinct arrangement of the alveoli and extensive epithelial cell proliferation from the surface to the lumen of the mammary ducts, and the mammary stroma showed the formation of new epithelial cells, which were cancer cells that spread to surrounding tissue. Conclusions: The proteomic profile was strongly associated with morphological alterations in mammary carcinogenesis in a rat model of DMBA-induced mammary cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.