Endotoxins of Gram-negative microbes fulfill as components of the outer membrane a vital function for bacterial viability and, if set free, induce in mammalians potent pathophysiological effects. Chemically, they are lipopolysaccharides (LPS) consisting of an O-specific chain, a core oligosaccharide, and a lipid component, termed lipid A. The latter determines the endotoxic activities and, together with the core constituent Kdo, essential functions for bacteria. The primary structure of lipid A of various bacterial origin has been elucidated and lipid A of Escherichia coli has been chemically synthesized. The biological analysis of synthetic lipid A partial structures proved that the expression of endotoxic activity depends on a unique primary structure and a peculiar endotoxic conformation. The biological lipid A effects are mediated by macrophage-derived bioactive peptides such as tumor necrosis factor alpha (TNF). Macrophages possess LPS receptors, and the lipid A regions involved in specific binding and cell activation have been characterized. Synthetic lipid A partial structures compete the specific binding of LPS or lipid A and antagonistically inhibit the production of LPS-induced TNF. LPS toxicity, in general, and the ability of LPS to induce TNF are also suppressed by a recently developed monoclonal antibody (IgG2a), which is directed against an epitope located in the core oligosaccharide. At present we determine molecular and submolecular details of the specificity of the interaction of lipid A with responsive host cells with the ultimate aim to provide pharmacological or immunological therapeutics that reduce or abolish the fatal inflammatory consequences of endotoxicosis.
Lipopolysaccharide (LPS) represents a major virulence factor of Gram-negative bacteria (`endotoxin') that can cause septic shock in mammals including man. The lipid anchor of LPS to the outer membrane, lipid A, has a peculiar chemical structure, harbours the`endotoxic principle' of LPS and is responsible for the expression of pathophysiological effects. Chemically modified lipid A can be endotoxically inactive, but may express strong antagonistic activity against LPS, a property that can be utilized in antisepsis treatment. We show here that these different biological activities are directly correlated with the molecular shape of lipid A. Only (hexaacyl) lipid A with a conical/concave shape, the cross-section of the hydrophobic region being larger than that of the hydrophilic region, exhibited strong interleukin-6 (IL-6)-inducing capacity. Most strikingly, a correlation between a cylindrical molecular shape of lipid A and antagonistic activity was established: IL-6 induction by enterobacterial LPS was inhibited by cylindrically shaped lipid A except for compounds with reduced headgroup charge. The antagonistic action is interpreted by assuming that lipid A molecules intercalate into the cytoplasmic membrane of mononuclear cells, and subsequently blocking of the putative signaling protein by the lipid A with cylindrical shape.
For the elucidation of the very early steps of immune cell activation by endotoxins (lipopolysaccharide, LPS) leading to the production and release of proinflammatory cytokines the question concerning the biologically active unit of endotoxins has to be addressed: are monomeric endotoxin molecules able to activate cells or is the active unit represented by larger endotoxin aggregates? This question has been answered controversially in the past. Inspired by the observation that natural isolates of lipid A, the lipid moiety of LPS harboring its endotoxic principle, from Escherichia coli express a higher endotoxic activity than the same amounts of the synthetic E. coli-like hexaacylated lipid A (compound 506), we looked closer at the chemical composition of natural isolates. We found in these isolates that the largest fraction was hexaacylated, but also significant amounts of penta-and tetraacylated molecules were present that, when administered to human mononuclear cells, may antagonize the induction of cytokines by biologically active hexaacylated endotoxins. We prepared separate aggregates of either compound 506 or 406 (tetraacylated precursor IVa), mixed at different molar ratios, and mixed aggregates containing both compounds in the same ratios. Surprisingly, the latter mixtures showed higher endotoxic activity than that of the pure compound 506 up to an admixture of 20% of compound 406. Similar results were obtained when using various phospholipids instead of compound 406. These observations can only be understood by assuming that the active unit of endotoxins is the aggregate. We further confirmed this result by preparing monomeric lipid A and LPS by a dialysis procedure and found that, at the same concentrations, only the aggregates were biologically active, whereas the monomers showed no activity. Bacterial lipopolysaccharide (LPS)1 is one of the most potent activators of the immune system in mammals. During cell growth or as a result of the action of antibacterial host factors or antimicrobial peptides, LPS is released from the outer leaflet of the cell wall of Gram-negative bacteria. Manifold interactions of LPS with host factors have been described, such as the activation of the complement system, activation of immune cells, and interaction with a variety of serum proteins, to name only a few. The most prominent activity of LPS is its immunostimulatory potency leading to the complex clinical syndrome of Gram-negative sepsis when the initial host response to an infection becomes dysregulated. The clinical manifestation of sepsis is characterized by fever, hypotension, respiratory and renal failure, and intravascular disseminated coagulation (1). These effects are not the result of LPS toxicity but are rather a consequence of cell activation by LPS and a subsequent dysregulation of the inflammatory host response. The biological activity of LPS is harbored in the lipid anchor of the molecule, termed lipid A or "the endotoxic principle" of LPS (2).A variety of investigations in the structural prerequisites ...
Lacticin 3147 is a two-peptide lantibiotic produced by Lactococcus lactis in which both peptides, LtnA1 and LtnA2, interact synergistically to produce antibiotic activities in the nanomolar concentration range; the individual peptides possess marginal (LtnA1) or no activity (LtnA2). We analysed the molecular basis for the synergism and found the cell wall precursor lipid II to play a crucial role as a target molecule. Tryptophan fluorescence measurements identified LtnA1, which is structurally similar to the lantibiotic mersacidin, as the lipid II binding component. However, LtnA1 on its own was not able to substantially inhibit cell wall biosynthesis in vitro; for full inhibition, LtnA2 was necessary. Both peptides together caused rapid K(+) leakage from intact cells; in model membranes supplemented with lipid II, the formation of defined pores with a diameter of 0.6 nm was observed. We propose a mode of action model in which LtnA1 first interacts specifically with lipid II in the outer leaflet of the bacterial cytoplasmic membrane. The resulting lipid II:LtnA1 complex is then able to recruit LtnA2 which leads to a high-affinity, three-component complex and subsequently inhibition of cell wall biosynthesis combined with pore formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.