Efficient 3D cell systems for neuronal induction are needed for future use in tissue regeneration. In this study, we have characterized the ability of neural stem/progenitor cells (NS/PC) to survive, proliferate, and differentiate in a collagen type I-hyaluronan scaffold. Embryonic, postnatal, and adult NS/PC were seeded in the present 3D scaffold and cultured in medium containing epidermal growth factor and fibroblast growth factor-2, a condition that stimulates NS/PC proliferation. Progenitor cells from the embryonic brain had the highest proliferation rate, and adult cells the lowest, indicating a difference in mitogenic responsiveness. NS/PC from postnatal stages down-regulated nestin expression more rapidly than both embryonic and adult NS/PC, indicating a faster differentiation process. After 6 days of differentiation in the 3D scaffold, NS/PC from the postnatal brain had generated up to 70% neurons, compared with 14% in 2D. NS/PC from other ages gave rise to approximately the same proportion of neurons in 3D as in 2D (9-26% depending on the source for NS/PC). In the postnatal NS/PC cultures, the majority of betaIII-tubulin-positive cells expressed glutamate, gamma-aminobutyric acid, and synapsin I after 11 days of differentiation, indicating differentiation to mature neurons. Here we report that postnatal NS/PC survive, proliferate, and efficiently form synapsin I-positive neurons in a biocompatible hydrogel.
Traumatic brain injury (TBI) is a devastating condition, often leading to life-long consequences for patients. Even though modern neurointensive care has improved functional and cognitive outcomes, efficient pharmacological therapies are still lacking. Targeting peripherally derived, or resident inflammatory, cells that are rapid responders to brain injury is promising, but complex, given that the contribution of inflammation to exacerbation versus improved recovery varies with time post-injury. The injury-induced inflammatory response is triggered by release of alarmins, and in the present study we asked whether interleukin-33 (IL-33), an injury-associated nuclear alarmin, is involved in TBI. Here, we used samples from human TBI microdialysate, tissue sections from human TBI, and mouse models of central nervous system injury and found that expression of IL-33 in the brain was elevated from nondetectable levels, reaching a maximum after 72 h in both human samples and mouse models. Astrocytes and oligodendrocytes were the main producers of IL-33. Post-TBI, brains of mice deficient in the IL-33 receptor, ST2, contained fewer microglia/macrophages in the injured region than wild-type mice and had an altered cytokine/chemokine profile in response to injury. These observations indicate that IL-33 plays a role in neuroinflammation with microglia/macrophages being cellular targets for this interleukin post-TBI.
The brain serotonergic system is colocalized and interacts with the neuropeptidergic substance P/neurokinin-1 (SP/NK1) system. Both these neurochemical systems have independently been implicated in stress and anxiety, but interactions between them might be crucial for human anxiety conditions. Here, we examined the serotonin and substance P/neurokinin-1 (SP/NK1) systems individually as well as their overlapping expression in 16 patients with posttraumatic stress disorder (PTSD) and 16 healthy controls. Participants were imaged with the highly selective radiotracers [(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (DASB) and [(11)C]GR205171 assessing serotonin transporter (SERT) and NK1 receptor availability, respectively. Voxel-wise analyses in the amygdala, our a priori-defined region of interest, revealed increased number of NK1 receptors, but not SERT in the PTSD group. Symptom severity, as indexed by the Clinician-administered PTSD Scale, was negatively related to SERT availability in the amygdala, and NK1 receptor levels moderated this relationship. Exploratory, voxel-wise whole-brain analyses revealed increased SERT availability in the precentral gyrus and posterior cingulate cortex of PTSD patients. Patients, relative to controls, displayed lower degree of overlapping expression between SERT and NK1 receptors in the putamen, thalamus, insula and lateral orbitofrontal gyrus, lower overlap being associated with higher PTSD symptom severity. Expression overlap also explained more of the symptomatology than did either system individually, underscoring the importance of taking interactions between the neurochemical systems into account. Thus, our results suggest that aberrant serotonergic-SP/NK1 couplings contribute to the pathophysiology of PTSD and, consequently, that normalization of these couplings may be therapeutically important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.