An RFLP linkage map of the potato is presented which comprises 304 loci derived from 230 DNA probes and one morphological marker (tuber skin color). The self-incompatibility locus of potato was mapped to chromosome I, which is homoeologous to tomato chromosome I. By mapping chromosome-specific tomato RFLP markers in potato and, vice versa, potato markers in tomato, the different potato and tomato RFLP maps were aligned to each other and the similarity of the potato and tomato genome was confirmed. The numbers given to the 12 potato chromosomes are now in accordance with the established tomato nomenclature. Comparisons between potato RFLP maps derived from different genetic backgrounds revealed conservation of marker order but differences in chromosome and total map length. In particular, significant reduction of map length was observed in interspecific compared to intraspecific crosses. The distribution of regions with distorted segregation ratios in the genome was analyzed for four potato parents. The most prominent distortion of recombination was found to be caused by the self-incompatibility locus.
A morphologically and agronomically heterogeneous collection of 38 diploid potato lines was analysed for restriction fragment length polymorphisms (RFLPs) with 168 potato probes, including random genomic and cDNA sequences as well as characterized potato genes of known function. The use of four cutter restriction enzymes and a fragment separation range from 250 to 2,000 bases on denaturing polyacrylamide gels allowed the detection of RFLPs of a few nucleotides. With this system, 90% of all probes tested showed useful polymorphism, and 95% of those were polymorphic with two or all three enzymes used. On the average, 80% of the probes were informative in all pairwise comparisons of the 38 lines with a minimum of 49% and a maximum of 95%. The percentage of heterozygosity was determined relative to each other for each line and indicated that direct segregation analysis in F1 populations should be feasible for most combinations. From a backcross involving one pair of the 38 lines, a RFLP linkage map with 141 loci was constructed, covering 690 cMorgan of the Solanum tuberosum genome.
A major dominant locus conferring resistance against several pathotypes of the root cyst nematode Globodera rostochiensis was mapped on the linkage map of potato using restriction fragment length polymorphism (RFLP) markers. The assessment of resistance versus susceptibility of the plants in the experimental population considered was based on an in vivo (pot) and an in vitro (petri dish) test. By linkage to nine RFLP markers the resistance locus Gro1 was assigned to the potato linkage group IX which is homologous to the tomato linkage group 7. Deviations from the additivity of recombination frequencies between Gro1 and its neighbouring markers in the pot test led to the detection of a few phenotypic misclassifications of small plants with poor root systems that limited the observation of cysts on susceptible roots. Pooled data from both tests provided better estimates of recombination frequencies in the linkage interval defined by the markers flanking the resistance locus.
It is generally accepted that prostaglandins (PGs) lower intraocular pressure by increasing uveoscleral outflow. The growing use of PGs to lower intraocular pressure has led to increased interest in the uveoscleral outflow. Uveoscleral outflow passes through extracellular spaces within the ciliary muscle and then through the suprachoroidal space to the posterior pole of the eye. Recent studies indicate that this reflects a direct effect of PGs on specific ciliary muscle prostanoid receptors. Activation of these receptors stimulates several linked responses, including cAMP formation and induction of c-Fos and c-Jun expression. These signals lead to increased biosynthesis of matrix metalloproteinases, a family of neutral proteinases that can cleave extracellular matrix molecules. These matrix metalloproteinases may initiate the alteration of collagens in the ciliary muscle to increase spaces among ciliary muscle fibers, thereby reducing hydraulic resistance in the uveoscleral outflow pathway.
The possibility of genotype identification with RFLP fingerprints was examined with 20 tetraploid potato varieties and 38 diploid potato lines. By using a sensitive detection system for small restriction fragment length differences and highly variable potato sequences as probes, all genotypes (diploids and tetraploids) were distinguished by a minimum of two probe/enzyme combinations. The best single probe/enzyme combination distinguished 19 out of 20 4n varieties and 33 out of 38 2n lines. Intravarietal variability was very small compared to the intervarietal variability, and patterns obtained with different DNA sources of the same genotype were identical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.