Effects of three photosystem II inhibitors and of their mixture on a freshwater phytoplankton community were studied in outdoor mesocosms. Atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30s) obtained from species-sensitivity distributions. Taking concentration addition into account, the mixture comprised one-third of the HC30 of each substance. Effects were investigated during a five-week period of constant concentrations and a five-month posttreatment period when the herbicides dissipated. Total abundance, species composition, and diversity and recovery of the community were evaluated. Ordination techniques, such as principal component analysis and principal response curve, were applied to compare the various treatments on the community level. The three herbicides stimulated comparable effects on total abundance and diversity of phytoplankton during the period of constant exposure because of the susceptibility of the dominant cryptophytes Chroomonas acuta and Cryptomonas erosa et ovata and the prasinophyte Nephroselmis cf. olivacea. Moreover, concentration addition described combined effects of atrazine, isoproturon, and diuron on total abundance and diversity in the constant-exposure period, because their mixture induced effects on abundance and diversity similar to those of the single substances. Principal component and principal response curve analyses revealed that the community structure of diuron- and isoproturon-treated phytoplankton recovered two weeks after constant exposure, which might be related to the fast dissipation of the phenylureas. Species compositions of mixture- and atrazine-treated communities were not comparable to that of the control community five months after the end of constant exposure. This might be explained by the slower dissipation of atrazine relative to the phenylureas and by differences in the species sensitivities, resulting in a different succession of phytoplankton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.