To evaluate the influence of prolonged axenic culture on the encystment capacity of Acanthamoeba spp., the encystment potential of four closely related Acanthamoeba strains, subcultured axenically for different periods of time, was evaluated comparing five encystment media. Media with more alkaline pH values were slightly more effective; however, the composition of the respective encystment medium had only limited influence on the encystment potential, while a strong correlation of losses in encystment potential and times strains had been cultured axenically was demonstrated. Furthermore, our results indicate that losses in encystment potential occur shortly after transfer into axenic culture to remain constant over many years.
In Europe, up to 90% of isolated Trichomonas vaginalis strains are naturally infected with Mycoplasma hominis, a facultative pathogen of the human genital tract. The consequences of this endosymbiosis are not yet well understood. The aim of the current study was to evaluate the impact of natural and artificial infections with M. hominis on the RNA expression levels of metronidazole susceptibility-associated genes of T. vaginalis. Three T. vaginalis strains (TVSS10−, TVSS25−, G3) without M. hominis, as well as the same strains naturally (TVSS10+, TVSS25+) and artificially (G3-MhSS25, TVSS25-MhSS25) infected with M. hominis, were investigated for their expression profiles of three genes associated with metronidazole resistance (ferredoxin, flavin reductase 1 and pyruvate:ferredoxin oxidoreductase). The minimal inhibitory concentrations (MICs) of metronidazole were evaluated for all combinations and the respective M. hominis-free T. vaginalis strains were used as controls. The sole presence of M. hominis led to a down-regulation of metronidazole susceptibility-associated genes in all T. vaginalis strains tested. Interestingly, the effect was more prominent in the artificial symbioses. Moreover, a twofold enhancement of metronidazole tolerability was observed in three infected T. vaginalis strains, compared to the respective strains without M. hominis. In conclusion, M. hominis had an impact on gene expression in all T. vaginalis strains and on metronidazole MIC in all but one strain tested.
BackgroundThe cell invasiveness of Mycoplasma gallisepticum, the causative agent of respiratory disease in chickens and infectious sinusitis in turkeys, may be a substantial factor in the well-known chronicity of these diseases and in the systemic spread of infection. To date, not much is known about the host factors and mechanisms involved in promotion or obstruction of M. gallisepticum adherence and/or cell invasion.In the current study, the influence of extracellular matrix (ECM) proteins such as fibronectin, collagen type IV and heparin, as well as plasminogen/plasmin, on the adhesion and cell invasion levels of M. gallisepticum to chicken erythrocytes and HeLa cells was investigated in vitro. Two strains, Rhigh and Rlow, which differ in their adhesion and invasion capacity, were analyzed by applying a modified gentamicin invasion assay. Binding of selected ECM molecules to M. gallisepticum was proven by Western blot analysis.ResultsCollagen type IV, fibronectin, and plasminogen exerted positive effects on adhesion and cell invasion of M. gallisepticum, with varying degrees, depending on the strain used. Especially strain Rhigh, with its highly reduced cell adhesion and invasion capabilities seemed to profit from the addition of plasminogen. Western and dot blot analyses showed that Rhigh as well as Rlow are able to adsorb horse fibronectin and plasminogen present in the growth medium. Depletion of HeLa cell membranes from cholesterol resulted in increased adhesion, but decreased cell invasion.ConclusionECM molecules seem to play a supportive role in the adhesion/cell invasion process of M. gallisepticum. Cholesterol depletion known to affect lipid rafts on the host cell surface had contrary effects on cell adherence and cell invasion of M. gallisepticum.
Nosocomial infections (NIs) pose an increasing threat to public health. The majority of NIs are bacterial, fungal, and viral infections; however, parasites also play a considerable role in NIs, particularly in our increasingly complex healthcare environment with a growing proportion of immunocompromised patients. Moreover, parasitic infections acquired via blood transfusion or organ transplantation are more likely to have severe or fatal disease outcomes compared with the normal route of infection. Many of these infections are preventable and most are treatable, but as the awareness for parasitic NIs is low, diagnosis and treatment are often delayed, resulting not only in higher health care costs but, importantly, also in prolonged courses of disease for the patients. For this article, we searched online databases and printed literature to give an overview of the causative agents of parasitic NIs, including the possible routes of infection and the diseases caused. Our review covers a broad spectrum of cases, ranging from widely known parasitic Nis, like blood transfusion malaria or water-borne cryptosporidiosis, to less well-known Nis, such as the transmission of Strongyloides stercoralis by solid organ transplantation or nosocomial myiasis. In addition, emerging NIs, such as babesiosis by blood transfusion or person-to-person transmitted scabies, are described.
Acanthamoeba spp. are the causative agents of Acanthamoeba keratitis (AK), which mainly occurs in contact lens wearers, and of skin lesions, granulomatous amoebic encephalitis (GAE), and disseminating diseases in the immunocompromised host. AK therapy is complex and irritating for the eye, skin lesions are difficult to treat, and there is no effective treatment for GAE. Therefore, new anti-Acanthamoeba drugs are needed. We investigated the anti-Acanthamoeba activity of N-chlorotaurine (NCT), an endogenous mild antiseptic. It was shown that NCT has amoebicidal qualities, both in phosphate-buffered saline (PBS) and in amoebic culture medium. After 6 h of treatment with 10 mM NCT in PBS, the levels of trophozoites of all strains investigated already showed at least a 2-log reduction. When the trophozoites were treated with 20 mM NCT in culture medium, they showed a 2-log reduction after 24 h. The addition of NH 4 Cl to NCT led to a faster decrease in the numbers of living cells, if tests were carried out in PBS. A delay of excystation was observed when cysts were treated with 55 mM (1%) NCT in culture medium. A complete failure of excystment was the result of treatment with 1% NCT plus 1% NH 4 Cl in PBS. Altogether, NCT clearly demonstrated amoebicidal activity at concentrations well tolerated by human tissues and might be useful as a topical drug for the treatment of Acanthamoeba infections. The addition of ammonium chloride can be considered to enhance the activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.