Electroporation is a well-known phenomenon that occurs at the cell membrane when cells are exposed to high-intensity electric pulses. Depending on electric pulse amplitude and number of pulses, applied electroporation can be reversible with membrane permeability recovery or irreversible. Reversible electroporation is used to introduce drugs or genetic material into the cell without affecting cell viability. Electrochemotherapy refers to a combined treatment: electroporation and drug injection to enhance its cytotoxic effect up to 1000-fold for bleomycin. Since several years, electrochemotherapy is gaining popularity as minimally invasive oncologic treatment. The adoption of electrochemotherapy procedure in interventional oncology poses several unsolved questions, since suitable tumor histology and size as well as therapeutic efficacy still needs to be deepen. Electrochemotherapy is usually applied in palliative settings for the treatment of patients with unresectable tumors to relieve pain and ameliorate quality of life. In most cases, it is used in the treatment of advanced stages of neoplasia when radical surgical treatment is not possible (eg, due to lesion location, size, and/or number). Further, electrochemotherapy allows treating tumor nodules in the proximity of important structures like vessels and nerves as the treatment does not involve tissue heating. Overall, the safety profile of electrochemotherapy is favorable. Most of the observed adverse events are local and transient, moderate local pain, erythema, edema, and muscle contractions during electroporation. The aim of this article is to review the recent published clinical experiences of electrochemotherapy use in deep-seated tumors with particular focus on liver cases. The principle of electrochemotherapy as well as the application to cutaneous metastases is briefly described. A short insight in the treatment of bone metastases, unresectable pancreas cancer, and soft tissue sarcoma will be given. Preclinical and clinical studies on treatment efficacy with electrochemotherapy of hepatic lesions and safety of the procedure adopted are discussed.
The application of navigational systems has the potential to improve percutaneous interventions. The accuracy of ablation probe placement can be increased and radiation doses reduced. Two different types of systems can be distinguished, tracking systems and robotic systems. This review gives an overview of navigation devices for clinical application and summarizes first findings in the implementation of navigation in percutaneous interventions using irreversible electroporation. Because of the high number of navigation systems, this review focuses on commercially available ones.
Objective To evaluate the influence of an active inflammatory process in the liver on Gd-EOB-DTPA-enhanced MR imaging in patients with different degrees of fibrosis/cirrhosis. Material and methods Overall, a number of 91 patients (61 men and 30 women; mean age 58 years) were included in this retrospective study. The inclusion criteria for this study were Gd-EOB-DTPA-enhanced MRI of the liver and histopathological evaluation of fibrotic and inflammatory changes. T1-weighted VIBE sequences of the liver with fat suppression were evaluated to determine the relative signal change (RE) between native and hepatobiliary phase (20min). In simple and multiple linear regression analyses, the influence of liver fibrosis/cirrhosis (Ishak score) and the histopathological degree of hepatitis (Modified Hepatic Activity Index, mHAI) on RE were evaluated. Results RE decreased significantly with increasing liver fibrosis/cirrhosis (p < 0.001) and inflammation (mHAI, p = 0.004). In particular, a correlation between RE and periportal or periseptal boundary zone hepatitis (moth feeding necrosis, mHAI A, p = 0.001) and portal inflammation (mHAI D, p < 0.001) was observed. In multiple linear regression analysis, both the degree of inflammation and the degree of fibrosis were significant predictors for RE (p < 0.01). Conclusion The results of this study suggest that the MR-based hepatic enhancement index RE is not only influenced by the degree of fibrosis, but also by the degree of inflammation.
Gadoxetic acid (Gd-EOB-DTPA) is a paramagnetic MRI contrast agent with raising popularity and has been used for evaluation of imaging-based liver function in recent years. In order to verify whether liver function as determined by real-time breath analysis using the intravenous administration of 13C-methacetin can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using signal intensity (SI) values. 110 patients underwent Gd-EOB-DTPA-enhanced 3-T MRI and, for the evaluation of liver function, a 13C-methacetin breath test (13C-MBT). SI values from before (SIpre) and 20 min after (SIpost) contrast media injection were acquired by T1-weighted volume-interpolated breath-hold examination (VIBE) sequences with fat suppression. The relative enhancement (RE) between the plain and contrast-enhanced SI values was calculated and evaluated in a correlation analysis of 13C-MBT values to SIpost and RE to obtain a SI-based estimation of 13C-MBT values. The simple regression model showed a log-linear correlation of 13C-MBT values with SIpost and RE (p < 0.001). Stratified by 3 different categories of 13C-MBT readouts, there was a constant significant decrease in both SIpost (p ≤ 0.002) and RE (p ≤ 0.033) with increasing liver disease progression as assessed by the 13C-MBT. Liver function as determined using real-time 13C-methacetin breath analysis can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using SI-based indices.
Gadoxetic acid-enhanced magnetic resonance imaging has become a useful tool for quantitative evaluation of liver capacity. We report on the importance of intrahepatic fat on gadoxetic acid-supported T1 mapping for estimation of liver maximum capacity, assessed by the realtime 13C-methacetin breathing test (13C-MBT). For T1 relaxometry, we used a respective T1-weighted sequence with two-point Dixon water-fat separation and various flip angles. Both T1 maps of the in-phase component without fat separation (T1_in) and T1 maps merely based on the water component (T1_W) were generated, and respective reduction rates of the T1 relaxation time (rrT1) were evaluated. A steady considerable decline in rrT1 with progressive reduction of liver function could be observed for both T1_in and T1_W (p < 0.001). When patients were subdivided into 3 different categories of 13C-MBT readouts, the groups could be significantly differentiated by their rrT1_in and rrT1_W values (p < 0.005). In a simple correlation model of 13C-MBT values with T1_inpost (r = 0.556; p < 0.001), T1_Wpost (r = 0.557; p < 0.001), rrT1_in (r = 0.711; p < 0.001) and rrT1_W (r = 0.751; p < 0.001), a log-linear correlation has been shown. Liver maximum capacity measured with 13C-MBT can be determined more precisely from gadoxetic acid-supported T1 mapping when intrahepatic fat is taken into account. Here, T1_W maps are shown to be significantly superior to T1_in maps without separation of fat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.