Cardiovascular stents are commonly used for the treatment of cardiovascular diseases that in developed societies are the most frequent causes of mortality and morbidity. In recent years, thorough research and development of drug-eluting stents has been done, with emphasis on coronary stenting to avoid the most common complication, in-stent thrombosis. Dipyridamole (DPM) is a medication that inhibits blood clot formation. Drug delivery nanoplatforms consisting of biodegradable polymers can be fabricated via electrospinning deposition, known for its cost-effective and versatile advantages, that produces fibrous scaffolds that are able to sustain and control drug release. A novel drug delivery nanosystem of polylactic acid fibrous scaffold loaded with the anti-platelet drug DPM was fabricated by electrospinning as coating for cardiovascular stents. The surface morphology and topography that were evaluated via atomic force microscopy, scanning electron microscopy and optical microscopy, were found to be good and suitable for tissue engineering. Contact angle measurements established the hydrophobic behavior of these fibrous nanoplatforms. Drug-release kinetics and degradation studies were conducted and revealed a sustained and controllable release of DPM, through this fibrous matrix over time. Finally, cytotoxicity studies took place to evaluate the cytocompatibility of the scaffold that confirmed its compatible behavior. The successful performance of this nanoplatform can lead to it being a valuable tool for atherosclerosis treatment.
There is, as a matter of fact, an ever increasing number of patients requiring total hip replacement (Pabinger, C.; Geissler, A. Osteoarthritis Cartilage
2014,
22, 734–741). Implant-associated acute inflammations after an invasive orthopedic surgery are one of the major causes of implant failure. In addition, there are instability, aseptic loosening, infection, metallosis and fracture (Melvin, J. S.; Karthikeyan, T.; Cope, R.; Fehring, T. K. J. Arthroplasty
2014,
29, 1285–1288). In this work, a drug-delivery nanoplatform system consisting of polymeric celluloce acetate (CA) scaffolds loaded with dexamethasone was fabricated through electrospinning. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated the successful fabrication of these structures. Cytotoxicity studies were performed by using MTT assay, methylene-blue staining and SEM fixation and showed very good cell adhesion and proliferation, indicating the cytocompatibility of these fibrous scaffolds. Drug-release kinetics was measured for the evaluation of a controllable and sustained release of anti-inflammatory drug onto the engineered implants and degradation study was conducted in order to assess the mass loss of polymers. This drug-delivery nanoplatform as coating on titanium implants may be a promising approach not only to alleviate but also to prevent implant-associated acute inflammations along with a simultaneous controlled release of the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.