The effect of different extracts of leaves and fruits of Moringa oleifera Lam. (Moringaceae) on gastric and duodenal ulcers was evaluated by using different gastric ulcer models and cysteamine-induced duodenal ulcer method. The leaf extracts (500 mg=kg, p.o.) of Moringa oleifera showed gastric ulcer healing effect in acetic acid-induced chronic gastric ulcers. The acetone extract and methanol extract of the leaves produced gastric antisecretory effect in pylorus-ligated rats and showed gastric cytoprotective effect in ethanol-induced and indomethacin-induced gastric ulcers. The leaf extracts also produced a significant reduction of stress-induced gastric ulcers and cysteamine-induced duodenal ulcers. None of the extracts of the fruits showed any significant antiulcer effect. It was concluded that leaves of Moringa oleifera increase healing of gastric ulcers and also prevent the development of experimentally induced gastric ulcers and duodenal ulcers in rats.
Histone deacetylase inhibitors (HDAC inhibitors) are used to treat malignancies such as cutaneous T cell lymphoma and peripheral T cell lymphoma. Only four drugs are approved by the US Food and Drug Administration, namely vorinostat, romidepsin, panobinostat and belinostat, while chidamide has been approved in China. There are a number of bioanalytical methods reported for the measurement of HDAC inhibitors in clinical (human plasma and serum) and preclinical (mouse plasma, rat plasma, urine and tissue homogenates, etc.) studies. This review covers various HDAC inhibitors such as vorinostat, romidepsin, panobinostat, belinostat and chidamide. In addition to providing a comprehensive review of the available methods for the above mentioned HDAC inhibitors, it also provides case studies with perspectives for chosen drugs. Based on the review, it is concluded that the published methodologies using either HPLC or LC-MS/MS are well suited for the quantification of HDAC inhibitors in various biological fluids to delineate pharmacokinetic data.
In the present study we evaluated the uptake of ALA and its conversion to EPA + DHA in rats given linseed oil (LSO) in native form or as a microemulsion in whey protein or in lipoid. In a single oral dose study in which rats maintained on rodent pellets deficient in ω-3 fatty acids were intubated with 0.35 g LSO in lipoid, the amount of ALA present in lymph was increased reaching a maximum concentration of 16.23 mg/ml at 2.5 h. The amount of ALA present in lymph was increased to a maximum level of 10.95 mg/ml at 4 h in rats given LSO as a microemulsion in whey protein. When LSO was given without emulsification, the amount of ALA present in lymph was found to reach a maximum level of 7.08 mg/ml at 6 h. A similar result was observed when weaning rats were intubated with 0.15 g of LSO per day for a period of 60 days. Higher levels of ALA by 41 and 103 % were observed in lymph lipids of rats given microemulsions of LSO in whey protein and in lipoid respectively as compared to rats given LSO without pre-emulsification. Very little conversion of ALA to EPA and DHA was observed in lymph lipids but higher amounts of EPA + DHA was observed in liver and serum of rats given LSO in microemulsion form. This study indicated that ALA concentration in lymph lipids was increased when LSO was given in microemulsion form in lipoid and further conversion to EPA and DHA was facilitated in liver and serum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.