The bulk resistivity of Fe-doped metalorganic chemical vapor deposited grown epitaxial InP was determined from current-voltage and capacitance measurements made on Schottky-diode-like devices. The current-voltage data exhibit both an ohmic and a space-charge-limited regime, and the capacitance was found to be independent of applied bias. The electrical thickness was obtained from the capacitance using a relationship appropriate for current injection. Data for two samples representing both thin (∼1 μm) and thick (∼9 μm) epitaxial layers are presented. The resistivities were 6.5×107 Ω cm and 2.2×108 Ω cm.
Articles you may be interested inAu/Pt/Ti contacts to pIn0.53Ga0.47As and nInP layers formed by a single metallization common step and rapid thermal processing
The strong dependence of electrical properties of Pt/Ti ohmic contact to p–In0.53Ga0.47 As (Zn: 5 × 1018 cm−3) on the interfacial microstructure formed by rapid thermal processing (RTP) were intensively studied by transmission electron microscopy, Auger Spectroscopy, and transmission line model (TLM) measurements. The rapid decrease of the specific contact resistance with an increase in RTP temperature was correlated with the development of an interfacial reaction zone. Significant interdiffusion of Ti, In and As across the interface occurred at temperature above, 350°C for a 30 second of RTP. A minimum specific contact resistance (3.4 × 10−6 Ω-cm2) was achieved at RTP temperature of 450°C. The corresponding interfacial microstructure revealed a complicated solid state reaction zone with InAs as one of the major interfacial compounds. The low contact resistance is attributed to the carrier conduction through the InAs regions. This is also consistent with the results of Pt/Ti contact experiments to p-type InAs, InP and GaAs binary surfaces, where the lowest contact resistance was achieved on InAs (3.0 × 10−7 Ω-cm2at Zn: 5 × 1018 cm−3). The temperature dependence of specific contact resistance of as-deposited Pt/Ti contact to InGaAs agrees very well with the thermionic emission dominated carrier transport mechanism with an effective barrier height, φb, of 0.13V. The rapid decrease in the contact resistance as well as its reduced temperature dependence after RTP treatment at elevated temperatures suggesting a partial conversion of thermionic emission dominated contact area to field emission dominated regions. A phenomenological theory of multiple parrallel carrier conduction processes was proposed to analyse the temperature dependence of specific contact resistance for contacts with complicated interfacial microstructure. It was found that, for low resistance contacts, majority of the carriers conducted through only a fraction of the contact area via a tunneling mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.