Traumatic brain injury (TBI) heavily impacts the body: it damages the brain tissue and the peripheral nervous system and shifts homeostasis in many types of tissue. An acute brain injury compromises the “brain–gut-microbiome axis”, a well-balanced network formed by the brain, gastrointestinal tract, and gut microbiome, which has a complex effect: damage to the brain alters the composition of the microbiome; the altered microbiome affects TBI severity, neuroplasticity, and metabolic pathways through various bacterial metabolites. We modeled TBI in rats. Using a bioinformatics approach, we sought to identify correlations between the gut microbiome composition, TBI severity, the rate of neurological function recovery, and blood metabolome. We found that the TBI caused changes in the abundance of 26 bacterial genera. The most dramatic change was observed in the abundance of Agathobacter species. The TBI also altered concentrations of several metabolites, specifically citrulline and tryptophan. We found no significant correlations between TBI severity and the pre-existing gut microbiota composition or blood metabolites. However, we discovered some differences between the two groups of subjects that showed high and low rates of neurological function recovery, respectively. The present study highlights the role of the brain–gut-microbiome axis in TBI.
медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского Первого Московского государственного медицинского университета им. И.М. Сеченова (Сеченовский университет) Министерства здравоохранения РФ,
An immature female worm, Dirofilaria immitis, was isolated from the scrotum of a 14-month-old child. This is the first identification of human dirofilariosis caused by D. immitis in a relatively Northern region (Moscow) of the Russian Federation. The parasite was diagnosed by means of morphological examination of the worm, confirmed by PCR assay. This case raises questions about the range of the D. immitis distribution among humans in Russia. To better understand the geographical distribution of dirofilarioses, detailed clinical and epidemiological information should be collected from human cases with appropriate laboratory confirmation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.