Objectives: Due to the maternally-inherited nature of mitochondrial DNA (mtDNA), there is a lack of information regarding fetal mtDNA in the plasma of pregnant women. We aim to explore the presence and topologic forms of circulating fetal and maternal mtDNA molecules in surrogate pregnancies. Methods: Genotypic differences between fetal and surrogate maternal mtDNA were used to identify the fetal and maternal mtDNA molecules in plasma. Plasma samples were obtained from the surrogate pregnant mothers. Using cleavage-end signatures of BfaI restriction enzyme, linear and circular mtDNA molecules in maternal plasma could be differentiated. Results: Fetal-derived mtDNA molecules were mainly linear (median: 88%; range: 80%-96%), whereas approximately half of the maternal-derived mtDNA molecules were circular (median: 51%; range: 42%-60%). The fetal DNA fraction of linear mtDNA was lower (median absolute difference: 9.8%; range: 1.1%-27%) than that of nuclear DNA (median: 20%; range: 9.7%-35%). The fetal-derived linear mtDNA molecules were shorter than the maternal-derived ones. Conclusion: Fetal mtDNA is present in maternal plasma, and consists mainly of linear molecules. Surrogate pregnancies represent a valuable clinical scenario for exploring the biology and potential clinical applications of circulating mtDNA, for example, for pregnancies conceived following mitochondrial replacement therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.