Chaos offers several advantages to the Engineer over other non-chaotic dynamics. One is that chaotic systems are often significantly easier to control than other linear or non-linear systems, requiring only small, appropriately timed perturbations to constrain them within specific unstable periodic orbits (UPOs). Another is that chaotic attractors contain an infinite number of these UPOs. If individual UPOs can be made to represent specific internal states of a system, then a chaotic attractor can be turned into an infinite state machine. In this paper we investigate this possibility with respect to chaotic neural networks. We present a method by which a network can self-select UPOs in response to specific input values. These UPOs correspond to network recognition states for these input values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.