The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline. Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis. Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries. Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.
In this study, polymorphism in ipa genes was found in five out of nine EIEC serotypes studied. When SalI and HindII were used in RFLP-PCR assays many EIEC serotypes showed polymorphism in ipaB and ipaD. On the other hand, no polymorphism was observed in ipaA and ipaC in these strains. The polymorphism present in EIEC strains is serotype-dependent, since restriction patterns were conserved amongst strains belonging to the same serotype. When IpaB deduced amino acid sequences of S. flexneri M90T and FBC124-13 were compared, ten amino acids changes could be observed mainly in the amino-terminal region. The deduced EIEC IpaD amino-acid sequence presented 91% similarity with the Shigella strain. In this case, amino acid changes were spread out through the whole structure, except in the carboxyl-terminal region.
There is much interest in the identification and characterization of genes involved in DNA repair because of their importance in the maintenance of the genome integrity. The high level of conservation of DNA repair genes means that these genetic elements may be used in phylogenetic studies as a source of information on the genetic origin and evolution of species. The mechanisms by which damaged DNA is repaired are well understood in bacteria, yeast and mammals, but much remains to be learned as regards plants. We identified genes involved in DNA repair mechanisms in sugarcane using a similarity search of the Brazilian Sugarcane Expressed Sequence Tag (SUCEST) database against known sequences deposited in other public databases (National Center of Biotechnology Information (NCBI) database and the Munich Information Center for Protein Sequences (MIPS) Arabidopsis thaliana database). This search revealed that most of the various proteins involved in DNA repair in sugarcane are similar to those found in other eukaryotes. However, we also identified certain intriguing features found only in plants, probably due to the independent evolution of this kingdom. The DNA repair mechanisms investigated include photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, non-homologous end joining, homologous recombination repair and DNA lesion tolerance. We report the main differences found in the DNA repair machinery in plant cells as compared to other organisms. These differences point to potentially different strategies plants employ to deal with DNA damage, that deserve further investigation.
Background Type I Diabetes mellitus (T1D) is characterized by a specific destruction of β-cells by the immune system. During this process pro-inflammatory cytokines are released in the pancreatic islets and contribute for β-cells demise. Cytokine-induced iNOS activation, via NF-κB, is implicated in induction of β-cells death, which includes ER stress activation. Physical exercise has been used as an adjunct for better glycemic control in patients with T1D, since it is able to increase glucose uptake independent of insulin. Recently, it was observed that the release of IL-6 by skeletal muscle, during physical exercise, could prevent β-cells death induced by pro-inflammatory cytokines. However, the molecular mechanisms involved in this beneficial effect on β-cells are not yet completely elucidated. Our aim was to evaluate the effect of IL-6 on β-cells exposed to pro-inflammatory cytokines. Results Pre-treatment with IL-6 sensitized INS-1E cells to cytokine-induced cell death, increasing cytokine-induced iNOS and Caspase-3 expression. Under these conditions, however, there was a decrease in cytokines-induced p-eIF2-α but not p-IRE1expression, proteins related to ER stress. To address if this prevention of adequate UPR response is involved in the increase in β-cells death markers induced by IL-6 pre-treatment, we used a chemical chaperone (TUDCA), which improves ER folding capacity. Use of TUDCA increased cytokines-induced Caspase-3 expression and Bax/Bcl-2 ratio in the presence of IL-6 pre-treatment. However, there is no modulation of p-eIF2-α expression by TUDCA in this condition, with increase of CHOP expression. Conclusion Treatment with IL-6 alone is not beneficial for β-cells, leading to increased cell death markers and impaired UPR activation. In addition, TUDCA has not been able to restore ER homeostasis or improve β-cells viability under this condition, suggesting that other mechanisms may be involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.