The daily ingestion of alcohol by pregnant mammals exposes the fetal brain to varying levels of alcohol through the placental circulation. Here we focus on the lingering impact on cortical function of 6.5% alcohol administered in a liquid diet to pregnant rats throughout gestation, followed by 3 alcohol-free months before brain function was analyzed in the offspring. Both spontaneous activity of the neurons in the barrel cortex and the level of response to test stimuli applied to the whiskers remained reduced by >75% after alcohol exposure. Whisker pairing, a type of cortical plasticity induced by trimming all but two whiskers in adult rats, occurred in <1 d in controls, but required 14 d to reach significance after alcohol exposure. These long-term neuronal deficits are present in all layers of cortex and affect neurons with both fast and slow action potentials. Plasticity is first seen in the total sample of neurons at 14 d; however, by 7 d, neurons in layer II/III already show plasticity, with no change in layer IV neurons, and a reverse shift occurs toward the inactive whisker in layer V neurons. Analysis of NMDA receptor subunits shows a persistent, approximately 30-50% reduction of NR1, NR2A, and NR2B subunits at postnatal day 90 in the barrel field cortex. Exposing the prenatal alcohol-exposed rats to enriched rearing conditions significantly improves all measured cortical functions but does not restore normal values. The results predict that combinations of interventions will be necessary to completely restore cortical function after exposure of the fetal brain to alcohol.
LIM homeodomain transcription factors are critical regulators of early development in multiple systems but have yet to be examined for a role in circuit formation. The LIM homeobox gene Lhx2 is expressed in cortical progenitors during development and also in the superficial layers of the neocortex in maturity. However, analysis of Lhx2 function at later stages of cortical development has been hampered by severe phenotypes associated with early loss of function. We identified a particular Cre-recombinase line that acts in the cortical primordium after its specification is complete, permitting an analysis of Lhx2 function in neocortical lamination, regionalization, and circuit formation by selective elimination of Lhx2 in the dorsal telencephalon. We report a profound disruption of cortical neuroanatomical and molecular features upon loss of Lhx2 in the cortex from embryonic day 11.5. A unique feature of cortical circuitry, the somatosensory barrels, is undetectable, and molecular patterning of cortical regions appears disrupted. Surprisingly, thalamocortical afferents innervate the mutant cortex with apparently normal regional specificity. Electrophysiological recordings reveal a loss of responses evoked by stimulation of individual whiskers, but responses to simultaneous stimulation of multiple whiskers were present, suggesting that thalamic afferents are unable to organize the neurocircuitry for barrel formation because of a cortex-specific requirement of Lhx2. We report that Lhx2 is required for the expression of transcription factor paired box gene 6, axon guidance molecule Ephrin A5, and the receptor NMDA receptor 1. These genes may mediate Lhx2 function in the formation of specialized neurocircuitry necessary for neocortical function.
The effect of blocking NMDA glutamate receptors in adult rat cortex on experience-dependent synaptic plasticity of barrel cortex neurons was studied by infusing D-AP5 with an osmotic minipump over barrel cortex for 5 d of novel sensory experience. In acute pilot studies, 500 microM D-AP5 was shown to specifically suppress NMDA receptor (NMDAR)-dependent responses of single cells in cortical layers I-IV. To induce plasticity, all whiskers except D2 and D1 were cut close to the face 1 d after pump insertion. The animals were housed with 2 cage mates before recording 4 d later. This pairing of two whiskers for several days in awake animals generates highly significant biases in responses from D2 layer IV (barrel) cells to the intact D1 whisker as opposed to the cut D3 whisker. D-AP5 completely prevented the D1/D3 surround whisker bias from occurring in the D2 barrel cells (p > 0.6 for D1 > D3, Wilcoxon). Fast-spike and slow-spike barrel cells were affected equally, suggesting parity for inhibitory and excitatory cell plasticity. D-AP5 only partially suppressed the D1/D3 bias in supragranular layers (layers II-III) in the same penetrations (p < 0.042 for D1 > D3). In control animals, the inactive L-AP5 isomer allowed the bias to develop normally toward the intact surround whisker (p < 0.001 for D1 > D3) for cells in all layers. We conclude that experience-dependent synaptic plasticity of mature barrel cortex is cortically dependent and that modification of local cortical NMDARs is necessary for its expression.
The capacity of adult barrel cortex to show experience-dependent plasticity after early restricted neonatal sensory deprivation was analyzed in barrel field cortex neurons. Selective sensory deprivation was induced by trimming two whiskers from postnatal day 0 (P0) to P21, namely, the principal D2 whisker plus one adjacent surround whisker (D3). At maturity (P90), responses of supragranular (layer II/III) and barrel (layer IV) neurons, all located in the D2 barrel column, were analyzed for modified responses to the deprived principal whisker (D2) and the nondeprived (D1) and deprived (D3) adjacent surround whiskers. For supragranular neurons, the responses to both principal and surround whiskers were reduced at maturity, whereas the barrel neurons showed mildly elevated responses to the principal whisker but a reduced response to the deprived surround whisker. In normal adult rats, trimming all but the principal D2 whisker and an adjacent D3 whisker for 3 d (whisker pairing) produced the expected bias: elevated responses from the intact D3 compared with the cut D1 whisker in both barrel and supragranular neurons. When the neonatally deprived D2 and D3 whiskers were paired at maturity, a similar D3/D1 bias was generated in barrel neurons, but no bias occurred in supragranular neuron responses. Pairing the maintained D1 and deprived D2 whiskers produced a much greater bias toward D1 compared with the deprived D3 whisker in barrel neurons than in supragranular neurons. There were minimal effects on response latencies in layer IV under any of the experimental conditions. These findings indicate that a restricted period of sensory deprivation in early postnatal life (1) impairs intracortical relay of deprived inputs from layer IV to layer II/III in barrel cortex at maturity and (2) degrades receptive field plasticity of the supragranular layer cells but not the thalamic-recipient barrel neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.