In the frame of the experimental implementation of a European quality assurance network for external radiotherapy, the methodology in the European Measuring Centre (MC) is presented. Mailed TL dosimeters are used for the check of the beam output and of the beam quality of photon beams. The thermoluminescent material is PTL 717 LiF powder. The readings were first performed on a manual, and then on an automatic reader, with standard deviations of the mean of 0.7% for one dosimeter. Corrections for supralinearity and for the energy dependence of the dosimeter response are applied. An original method has been developed to correct for the variation of the LiF response as a function of time. It is shown that the sensitivity of the powder changes during storage, leading to a kind of 'inverse fading'. The global uncertainty of the TL postal measurement procedure is estimated to be about 1.5% for the 60Co beams and 2% for the x-ray beams. Intercomparisons with the IAEA and with the EORTC have shown an agreement better than 2% for all energies. It can be concluded that the results of the MC are suitable for the requirements of a European quality assurance network.
Dental CT dose evaluations are commonly performed using thermoluminescent dosimeters (TLD) inside anthropomorphic phantoms. Radiochromic films with good sensitivity in the X-ray diagnostic field have recently been developed and are commercially available as GAFCHROMIC XR-QA. There are potential advantages in the use of radiochromic films such as a more comprehensive dosimetry thanks to the adjustable size of the film samples. The purpose of this study was to investigate the feasibility of using radiochromic films for dental CT dose evaluations. Film samples were cut with a width of 5mm and a length of 25 mm (strips), the same size as the Alderson Rando anthropomorphic phantom holes used in this study. Dental CT dose measurements were performed using simultaneously both TLD and radiochromic strips in the same phantom sites. Two equipment types were considered for dental CT examinations: a 16 slice CT and a cone beam CT. Organ equivalent doses were then obtained averaging the measurements from the sites of the same organ and effective doses were calculated using ICRP 103 weighting factors. The entire procedure was repeated four times for each CT in order to compare also the repeatability of the two dosimeter types. A linear correlation was found between the absorbed dose evaluated with radiochromic films and with TLD, with slopes of 0.930 and 0.944 (correlation r>0.99). The maximum difference between the two dosimeter's measurements was 25%, whereas the average difference was 7%. The measurement repeatability was comparable for the two dosimeters at cumulative doses above 15 mGy (estimated uncertainty at 1 sigma level of about 5%), whereas below this threshold radiochromic films show a greater dispersion of data, of about 10% at 1 sigma level. We obtained, using respectively Gafchromic and TLD measurements, effective dose values of 107 μSv and 117 μSv (i.e. difference of 8.6%) for the cone beam CT and of 523 μSv and 562 μSv (i.e. difference of 7%) for the multislice CT. This study demonstrates the feasibility of radiochromic films for dental CT dosimetry, pointing out a good agreement with the results obtained using TLD, with potential advantages and the chance of a more extensive dose investigation.
The simulation of rotational geometry and of asymmetric beam distribution by means of pcxmc 2.0 enabled us to determine patient organ doses depending on weight, height and gender. Alternatively, the measurement of an in phantom dose indicator combined with proper correction coefficients can be a useful tool for a first dose estimation of in-field organs. The data and coefficients provided in this study can be applied to any patient undergoing a scan by an Elekta XVI equipment.
The evaluation of radiation burden in vivo is crucial in modern radiology as stated also in the European Directive 2013/59/Euratom—Basic Safety Standard. Although radiation dose monitoring can impact the justification and optimization of radiological procedure, as well as effective patient communication, standardization of radiation monitoring software is far to be achieved. Toward this goal, the Italian Association of Medical Physics (AIFM) published a report describing the state of the art and standard guidelines in radiation dose monitoring system quality assurance. This article reports the AIFM statement about radiation dose monitoring systems (RDMSs) summarizing the different critical points of the systems related to Medical Physicist Expert (MPE) activities before, during, and after their clinical implementation. In particular, the article describes the general aspects of radiation dose data management, radiation dose monitoring systems, data integrity, and data responsibilities. Furthermore, the acceptance tests that need to be implemented and the most relevant dosimetric data for each radiological modalities are reported under the MPE responsibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.